CVE Vulnerabilities

CVE-2008-3534

Uncontrolled Resource Consumption

Published: Aug 08, 2008 | Modified: Jul 31, 2020
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
4.9 MEDIUM
AV:L/AC:L/Au:N/C:N/I:N/A:C
RedHat/V2
RedHat/V3
Ubuntu

The shmem_delete_inode function in mm/shmem.c in the tmpfs implementation in the Linux kernel before 2.6.26.1 allows local users to cause a denial of service (system crash) via a certain sequence of file create, remove, and overwrite operations, as demonstrated by the insserv program, related to allocation of useless pages and improper maintenance of the i_blocks count.

Weakness

The software does not properly control the allocation and maintenance of a limited resource, thereby enabling an actor to influence the amount of resources consumed, eventually leading to the exhaustion of available resources.

Affected Software

Name Vendor Start Version End Version
Linux_kernel Linux * *
MRG for RHEL-5 RedHat kernel-rt-0:2.6.24.7-81.el5rt *
Linux Ubuntu hardy *
Linux Ubuntu upstream *
Linux-source-2.6.15 Ubuntu dapper *
Linux-source-2.6.15 Ubuntu upstream *
Linux-source-2.6.20 Ubuntu feisty *
Linux-source-2.6.20 Ubuntu upstream *
Linux-source-2.6.22 Ubuntu gutsy *
Linux-source-2.6.22 Ubuntu upstream *

Extended Description

Limited resources include memory, file system storage, database connection pool entries, and CPU. If an attacker can trigger the allocation of these limited resources, but the number or size of the resources is not controlled, then the attacker could cause a denial of service that consumes all available resources. This would prevent valid users from accessing the software, and it could potentially have an impact on the surrounding environment. For example, a memory exhaustion attack against an application could slow down the application as well as its host operating system. There are at least three distinct scenarios which can commonly lead to resource exhaustion:

Resource exhaustion problems are often result due to an incorrect implementation of the following situations:

Potential Mitigations

  • Mitigation of resource exhaustion attacks requires that the target system either:

  • The first of these solutions is an issue in itself though, since it may allow attackers to prevent the use of the system by a particular valid user. If the attacker impersonates the valid user, they may be able to prevent the user from accessing the server in question.

  • The second solution is simply difficult to effectively institute – and even when properly done, it does not provide a full solution. It simply makes the attack require more resources on the part of the attacker.

References