CVE Vulnerabilities

CVE-2008-5232

Out-of-bounds Write

Published: Nov 26, 2008 | Modified: Dec 03, 2019
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
9.3 HIGH
AV:N/AC:M/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
Ubuntu

Buffer overflow in the CallHTMLHelp method in the Microsoft Windows Media Services ActiveX control in nskey.dll 4.1.00.3917 in Windows Media Services on Microsoft Windows NT and 2000, and Avaya Media and Message Application servers, allows remote attackers to execute arbitrary code via a long argument. NOTE: the provenance of this information is unknown; the details are obtained solely from third party information.

Weakness

The software writes data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Windows_2000 Microsoft - -
Windows_nt Microsoft 4.0 4.0

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Run or compile the software using features or extensions that automatically provide a protection mechanism that mitigates or eliminates buffer overflows.

  • For example, certain compilers and extensions provide automatic buffer overflow detection mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64].

References