CVE Vulnerabilities

CVE-2008-5233

Improper Restriction of Operations within the Bounds of a Memory Buffer

Published: Nov 26, 2008 | Modified: Oct 11, 2018
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
4.3 MEDIUM
AV:N/AC:M/Au:N/C:N/I:N/A:P
RedHat/V2
RedHat/V3
Ubuntu

xine-lib 1.1.12, and other versions before 1.1.15, does not check for failure of malloc in circumstances including (1) the mymng_process_header function in demux_mng.c, (2) the open_mod_file function in demux_mod.c, and (3) frame_buffer allocation in the real_parse_audio_specific_data function in demux_real.c, which allows remote attackers to cause a denial of service (crash) or possibly execute arbitrary code via a crafted media file.

Weakness

The software performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.

Affected Software

Name Vendor Start Version End Version
Xine-lib Xine 0.9.13 0.9.13
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1 1
Xine-lib Xine 1.0 1.0
Xine-lib Xine 1.0.1 1.0.1
Xine-lib Xine 1.0.2 1.0.2
Xine-lib Xine 1.0.3a 1.0.3a
Xine-lib Xine 1.1.0 1.1.0
Xine-lib Xine 1.1.1 1.1.1
Xine-lib Xine 1.1.2 1.1.2
Xine-lib Xine 1.1.3 1.1.3
Xine-lib Xine 1.1.4 1.1.4
Xine-lib Xine 1.1.5 1.1.5
Xine-lib Xine 1.1.6 1.1.6
Xine-lib Xine 1.1.7 1.1.7
Xine-lib Xine 1.1.8 1.1.8
Xine-lib Xine 1.1.9 1.1.9
Xine-lib Xine 1.1.9.1 1.1.9.1
Xine-lib Xine 1.1.10 1.1.10
Xine-lib Xine 1.1.10.1 1.1.10.1
Xine-lib Xine 1.1.11 1.1.11
Xine-lib Xine 1.1.11.1 1.1.11.1
Xine-lib Xine 1.1.12 1.1.12
Xine-lib Xine 1.1.13 1.1.13
Xine-lib Xine * 1.1.14
Xine-lib Xine 1_beta1 1_beta1
Xine-lib Xine 1_beta2 1_beta2
Xine-lib Xine 1_beta3 1_beta3
Xine-lib Xine 1_beta4 1_beta4
Xine-lib Xine 1_beta5 1_beta5
Xine-lib Xine 1_beta6 1_beta6
Xine-lib Xine 1_beta7 1_beta7
Xine-lib Xine 1_beta8 1_beta8
Xine-lib Xine 1_beta9 1_beta9
Xine-lib Xine 1_beta10 1_beta10
Xine-lib Xine 1_beta11 1_beta11
Xine-lib Xine 1_beta12 1_beta12
Xine-lib Ubuntu dapper *
Xine-lib Ubuntu gutsy *
Xine-lib Ubuntu hardy *
Xine-lib Ubuntu upstream *

Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Run or compile the software using features or extensions that automatically provide a protection mechanism that mitigates or eliminates buffer overflows.

  • For example, certain compilers and extensions provide automatic buffer overflow detection mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64].

References