CVE Vulnerabilities

CVE-2008-5359

Improper Restriction of Operations within the Bounds of a Memory Buffer

Published: Dec 05, 2008 | Modified: Oct 09, 2019
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
9.3 HIGH
AV:N/AC:M/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
Ubuntu

Buffer overflow in Java Runtime Environment (JRE) for Sun JDK and JRE 6 Update 10 and earlier; JDK and JRE 5.0 Update 16 and earlier; SDK and JRE 1.4.2_18 and earlier; and SDK and JRE 1.3.1_23 and earlier might allow remote attackers to execute arbitrary code, related to a ConvolveOp operation in the Java AWT library.

Weakness

The software performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.

Affected Software

Name Vendor Start Version End Version
Jre Sun 1.3.1 1.3.1
Jre Sun 1.3.1_2 1.3.1_2
Jre Sun 1.3.1_03 1.3.1_03
Jre Sun 1.3.1_04 1.3.1_04
Jre Sun 1.3.1_05 1.3.1_05
Jre Sun 1.3.1_06 1.3.1_06
Jre Sun 1.3.1_07 1.3.1_07
Jre Sun 1.3.1_08 1.3.1_08
Jre Sun 1.3.1_09 1.3.1_09
Jre Sun 1.3.1_10 1.3.1_10
Jre Sun 1.3.1_11 1.3.1_11
Jre Sun 1.3.1_12 1.3.1_12
Jre Sun 1.3.1_13 1.3.1_13
Jre Sun 1.3.1_14 1.3.1_14
Jre Sun 1.3.1_15 1.3.1_15
Jre Sun 1.3.1_16 1.3.1_16
Jre Sun 1.3.1_17 1.3.1_17
Jre Sun 1.3.1_18 1.3.1_18
Jre Sun 1.3.1_19 1.3.1_19
Jre Sun 1.3.1_20 1.3.1_20
Jre Sun 1.3.1_21 1.3.1_21
Jre Sun 1.3.1_22 1.3.1_22
Jre Sun 1.3.1_23 1.3.1_23
Jre Sun 1.4.2 1.4.2
Jre Sun 1.4.2_1 1.4.2_1
Jre Sun 1.4.2_2 1.4.2_2
Jre Sun 1.4.2_3 1.4.2_3
Jre Sun 1.4.2_4 1.4.2_4
Jre Sun 1.4.2_5 1.4.2_5
Jre Sun 1.4.2_6 1.4.2_6
Jre Sun 1.4.2_7 1.4.2_7
Jre Sun 1.4.2_8 1.4.2_8
Jre Sun 1.4.2_9 1.4.2_9
Jre Sun 1.4.2_10 1.4.2_10
Jre Sun 1.4.2_11 1.4.2_11
Jre Sun 1.4.2_12 1.4.2_12
Jre Sun 1.4.2_13 1.4.2_13
Jre Sun 1.4.2_14 1.4.2_14
Jre Sun 1.4.2_15 1.4.2_15
Jre Sun 1.4.2_16 1.4.2_16
Jre Sun 1.4.2_17 1.4.2_17
Jre Sun 1.4.2_18 1.4.2_18
Jre Sun 1.5.0 1.5.0
Jre Sun 1.5.0 1.5.0
Jre Sun 1.5.0 1.5.0
Jre Sun 1.5.0 1.5.0
Jre Sun 1.5.0 1.5.0
Jre Sun 1.5.0 1.5.0
Jre Sun 1.5.0 1.5.0
Jre Sun 1.5.0 1.5.0
Jre Sun 1.5.0 1.5.0
Jre Sun 1.5.0 1.5.0
Jre Sun 1.6.0 1.6.0
Jre Sun 1.6.0 1.6.0
Jre Sun 1.6.0 1.6.0
Jre Sun 1.6.0 1.6.0
Jre Sun 1.6.0 1.6.0
Jre Sun 1.6.0 1.6.0
Jre Sun 1.6.0 1.6.0
Jre Sun 1.6.0 1.6.0
Extras for RHEL 3 RedHat java-1.4.2-ibm-0:1.4.2.13-1jpp.1.el3 *
Extras for RHEL 4 RedHat java-1.6.0-sun-1:1.6.0.11-1jpp.1.el4 *
Extras for RHEL 4 RedHat java-1.5.0-sun-0:1.5.0.17-1jpp.2.el4 *
Extras for RHEL 4 RedHat java-1.6.0-ibm-1:1.6.0.3-1jpp.3.el4 *
Extras for RHEL 4 RedHat java-1.5.0-ibm-1:1.5.0.9-1jpp.4.el4 *
Extras for RHEL 4 RedHat java-1.4.2-ibm-0:1.4.2.13-1jpp.1.el4 *
Red Hat Network Satellite Server v 5.2 RedHat java-1.5.0-ibm-1:1.5.0.9-1jpp.4.el4 *
Supplementary for Red Hat Enterprise Linux 5 RedHat java-1.6.0-sun-1:1.6.0.11-1jpp.1.el5 *
Supplementary for Red Hat Enterprise Linux 5 RedHat java-1.5.0-sun-0:1.5.0.17-1jpp.2.el5 *
Supplementary for Red Hat Enterprise Linux 5 RedHat java-1.6.0-ibm-1:1.6.0.3-1jpp.1.el5 *
Supplementary for Red Hat Enterprise Linux 5 RedHat java-1.5.0-ibm-1:1.5.0.9-1jpp.2.el5 *
Supplementary for Red Hat Enterprise Linux 5 RedHat java-1.4.2-ibm-0:1.4.2.13-1jpp.1.el5 *
Openjdk-6 Ubuntu hardy *
Openjdk-6 Ubuntu intrepid *
Sun-java5 Ubuntu dapper *
Sun-java5 Ubuntu hardy *
Sun-java5 Ubuntu intrepid *
Sun-java5 Ubuntu jaunty *
Sun-java6 Ubuntu devel *
Sun-java6 Ubuntu hardy *
Sun-java6 Ubuntu intrepid *
Sun-java6 Ubuntu jaunty *
Sun-java6 Ubuntu karmic *

Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Run or compile the software using features or extensions that automatically provide a protection mechanism that mitigates or eliminates buffer overflows.

  • For example, certain compilers and extensions provide automatic buffer overflow detection mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64].

References