CVE Vulnerabilities

CVE-2010-2959

Integer Overflow or Wraparound

Published: Sep 08, 2010 | Modified: Nov 07, 2023
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
7.2 HIGH
AV:L/AC:L/Au:N/C:C/I:C/A:C
RedHat/V2
7.2 IMPORTANT
AV:L/AC:L/Au:N/C:C/I:C/A:C
RedHat/V3
Ubuntu
HIGH

Integer overflow in net/can/bcm.c in the Controller Area Network (CAN) implementation in the Linux kernel before 2.6.27.53, 2.6.32.x before 2.6.32.21, 2.6.34.x before 2.6.34.6, and 2.6.35.x before 2.6.35.4 allows attackers to execute arbitrary code or cause a denial of service (system crash) via crafted CAN traffic.

Weakness

The product performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control.

Affected Software

Name Vendor Start Version End Version
Linux_kernel Linux * 2.6.27.53 (excluding)
Linux_kernel Linux 2.6.32 (including) 2.6.32.21 (excluding)
Linux_kernel Linux 2.6.34 (including) 2.6.34.6 (excluding)
Linux_kernel Linux 2.6.35 (including) 2.6.35.4 (excluding)
Linux Ubuntu jaunty *
Linux Ubuntu karmic *
Linux Ubuntu lucid *
Linux Ubuntu maverick *
Linux Ubuntu upstream *
Linux-ec2 Ubuntu karmic *
Linux-ec2 Ubuntu lucid *
Linux-ec2 Ubuntu maverick *
Linux-ec2 Ubuntu upstream *
Linux-fsl-imx51 Ubuntu karmic *
Linux-fsl-imx51 Ubuntu lucid *
Linux-fsl-imx51 Ubuntu upstream *
Linux-mvl-dove Ubuntu karmic *
Linux-mvl-dove Ubuntu lucid *
Linux-mvl-dove Ubuntu upstream *
Linux-source-2.6.15 Ubuntu upstream *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • If possible, choose a language or compiler that performs automatic bounds checking.
  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
  • Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
  • Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
  • Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
  • Understand the programming language’s underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, “not-a-number” calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
  • Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.

References