CVE Vulnerabilities

CVE-2012-3400

Out-of-bounds Write

Published: Oct 03, 2012 | Modified: Apr 11, 2025
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
7.6 HIGH
AV:N/AC:H/Au:N/C:C/I:C/A:C
RedHat/V2
6.2 LOW
AV:L/AC:H/Au:N/C:C/I:C/A:C
RedHat/V3
Ubuntu
LOW
root.io logo minimus.io logo echo.ai logo

Heap-based buffer overflow in the udf_load_logicalvol function in fs/udf/super.c in the Linux kernel before 3.4.5 allows remote attackers to cause a denial of service (system crash) or possibly have unspecified other impact via a crafted UDF filesystem.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

NameVendorStart VersionEnd Version
Linux_kernelLinux*3.0.37 (excluding)
Linux_kernelLinux3.1 (including)3.2.23 (excluding)
Linux_kernelLinux3.4 (including)3.4.5 (excluding)
Red Hat Enterprise Linux 5RedHatkernel-0:2.6.18-348.2.1.el5*
Red Hat Enterprise Linux 6RedHatkernel-0:2.6.32-279.14.1.el6*
Red Hat Enterprise MRG 2RedHatkernel-rt-0:3.2.33-rt50.66.el6rt*
LinuxUbuntuhardy*
LinuxUbuntulucid*
LinuxUbuntunatty*
LinuxUbuntuoneiric*
LinuxUbuntuprecise*
LinuxUbuntuprecise/esm*
LinuxUbuntuupstream*
Linux-armadaxpUbuntuprecise*
Linux-armadaxpUbuntuupstream*
Linux-awsUbuntuupstream*
Linux-ec2Ubuntulucid*
Linux-ec2Ubuntuupstream*
Linux-floUbuntutrusty*
Linux-floUbuntutrusty/esm*
Linux-floUbuntuupstream*
Linux-floUbuntuutopic*
Linux-floUbuntuvivid*
Linux-floUbuntuvivid/stable-phone-overlay*
Linux-floUbuntuwily*
Linux-floUbuntuxenial*
Linux-floUbuntuyakkety*
Linux-fsl-imx51Ubuntulucid*
Linux-fsl-imx51Ubuntuupstream*
Linux-gkeUbuntuupstream*
Linux-goldfishUbuntusaucy*
Linux-goldfishUbuntutrusty*
Linux-goldfishUbuntutrusty/esm*
Linux-goldfishUbuntuupstream*
Linux-grouperUbuntusaucy*
Linux-grouperUbuntutrusty*
Linux-grouperUbuntuupstream*
Linux-grouperUbuntuutopic*
Linux-hweUbuntuupstream*
Linux-hwe-edgeUbuntuupstream*
Linux-linaro-omapUbuntunatty*
Linux-linaro-omapUbuntuoneiric*
Linux-linaro-omapUbuntuprecise*
Linux-linaro-omapUbuntuquantal*
Linux-linaro-omapUbuntuupstream*
Linux-linaro-sharedUbuntuoneiric*
Linux-linaro-sharedUbuntuprecise*
Linux-linaro-sharedUbuntuquantal*
Linux-linaro-sharedUbuntuupstream*
Linux-linaro-vexpressUbuntunatty*
Linux-linaro-vexpressUbuntuoneiric*
Linux-linaro-vexpressUbuntuprecise*
Linux-linaro-vexpressUbuntuquantal*
Linux-linaro-vexpressUbuntuupstream*
Linux-lts-backport-maverickUbuntulucid*
Linux-lts-backport-maverickUbuntuupstream*
Linux-lts-backport-nattyUbuntulucid*
Linux-lts-backport-nattyUbuntuupstream*
Linux-lts-backport-oneiricUbuntulucid*
Linux-lts-backport-oneiricUbuntuupstream*
Linux-lts-quantalUbuntuupstream*
Linux-lts-raringUbuntuupstream*
Linux-lts-trustyUbuntuupstream*
Linux-lts-utopicUbuntuupstream*
Linux-lts-vividUbuntuupstream*
Linux-lts-wilyUbuntuupstream*
Linux-lts-xenialUbuntuupstream*
Linux-maguroUbuntusaucy*
Linux-maguroUbuntutrusty*
Linux-maguroUbuntuupstream*
Linux-makoUbuntusaucy*
Linux-makoUbuntutrusty*
Linux-makoUbuntutrusty/esm*
Linux-makoUbuntuupstream*
Linux-makoUbuntuutopic*
Linux-makoUbuntuvivid*
Linux-makoUbuntuvivid/stable-phone-overlay*
Linux-makoUbuntuwily*
Linux-makoUbuntuxenial*
Linux-makoUbuntuyakkety*
Linux-mantaUbuntusaucy*
Linux-mantaUbuntuupstream*
Linux-mvl-doveUbuntulucid*
Linux-mvl-doveUbuntuupstream*
Linux-qcm-msmUbuntulucid*
Linux-qcm-msmUbuntunatty*
Linux-qcm-msmUbuntuoneiric*
Linux-qcm-msmUbuntuprecise*
Linux-qcm-msmUbuntuquantal*
Linux-qcm-msmUbuntuupstream*
Linux-raspi2Ubuntuupstream*
Linux-raspi2Ubuntuvivid/ubuntu-core*
Linux-snapdragonUbuntuupstream*
Linux-ti-omap4Ubuntunatty*
Linux-ti-omap4Ubuntuoneiric*
Linux-ti-omap4Ubuntuprecise*
Linux-ti-omap4Ubuntuupstream*

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References