CVE Vulnerabilities

CVE-2014-0069

Improper Restriction of Operations within the Bounds of a Memory Buffer

Published: Feb 28, 2014 | Modified: Feb 13, 2023
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
7.2 HIGH
AV:L/AC:L/Au:N/C:C/I:C/A:C
RedHat/V2
6.2 MODERATE
AV:L/AC:H/Au:N/C:C/I:C/A:C
RedHat/V3
Ubuntu

The cifs_iovec_write function in fs/cifs/file.c in the Linux kernel through 3.13.5 does not properly handle uncached write operations that copy fewer than the requested number of bytes, which allows local users to obtain sensitive information from kernel memory, cause a denial of service (memory corruption and system crash), or possibly gain privileges via a writev system call with a crafted pointer.

Weakness

The product performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.

Affected Software

Name Vendor Start Version End Version
Linux_kernel Linux * 3.13.5
Red Hat Enterprise Linux 6 RedHat kernel-0:2.6.32-431.11.2.el6 *
Red Hat Enterprise MRG 2 RedHat kernel-rt-0:3.10.33-rt32.33.el6rt *
Linux Ubuntu precise *
Linux Ubuntu precise/esm *
Linux Ubuntu quantal *
Linux Ubuntu saucy *
Linux Ubuntu upstream *
Linux-armadaxp Ubuntu precise *
Linux-armadaxp Ubuntu quantal *
Linux-armadaxp Ubuntu upstream *
Linux-aws Ubuntu upstream *
Linux-ec2 Ubuntu upstream *
Linux-flo Ubuntu esm-apps/xenial *
Linux-flo Ubuntu trusty *
Linux-flo Ubuntu upstream *
Linux-flo Ubuntu utopic *
Linux-flo Ubuntu vivid *
Linux-flo Ubuntu vivid/stable-phone-overlay *
Linux-flo Ubuntu wily *
Linux-flo Ubuntu xenial *
Linux-flo Ubuntu yakkety *
Linux-fsl-imx51 Ubuntu lucid *
Linux-fsl-imx51 Ubuntu upstream *
Linux-gke Ubuntu upstream *
Linux-goldfish Ubuntu esm-apps/xenial *
Linux-goldfish Ubuntu saucy *
Linux-goldfish Ubuntu trusty *
Linux-goldfish Ubuntu upstream *
Linux-goldfish Ubuntu utopic *
Linux-goldfish Ubuntu vivid *
Linux-goldfish Ubuntu wily *
Linux-goldfish Ubuntu xenial *
Linux-goldfish Ubuntu yakkety *
Linux-goldfish Ubuntu zesty *
Linux-grouper Ubuntu saucy *
Linux-grouper Ubuntu trusty *
Linux-grouper Ubuntu upstream *
Linux-grouper Ubuntu utopic *
Linux-hwe Ubuntu upstream *
Linux-hwe-edge Ubuntu upstream *
Linux-linaro-omap Ubuntu precise *
Linux-linaro-omap Ubuntu quantal *
Linux-linaro-omap Ubuntu upstream *
Linux-linaro-shared Ubuntu precise *
Linux-linaro-shared Ubuntu quantal *
Linux-linaro-shared Ubuntu upstream *
Linux-linaro-vexpress Ubuntu precise *
Linux-linaro-vexpress Ubuntu quantal *
Linux-linaro-vexpress Ubuntu upstream *
Linux-lts-quantal Ubuntu precise *
Linux-lts-quantal Ubuntu upstream *
Linux-lts-raring Ubuntu precise *
Linux-lts-raring Ubuntu upstream *
Linux-lts-saucy Ubuntu precise *
Linux-lts-saucy Ubuntu upstream *
Linux-lts-trusty Ubuntu upstream *
Linux-lts-utopic Ubuntu upstream *
Linux-lts-vivid Ubuntu upstream *
Linux-lts-wily Ubuntu upstream *
Linux-lts-xenial Ubuntu upstream *
Linux-maguro Ubuntu saucy *
Linux-maguro Ubuntu trusty *
Linux-maguro Ubuntu upstream *
Linux-mako Ubuntu esm-apps/xenial *
Linux-mako Ubuntu saucy *
Linux-mako Ubuntu trusty *
Linux-mako Ubuntu upstream *
Linux-mako Ubuntu utopic *
Linux-mako Ubuntu vivid *
Linux-mako Ubuntu vivid/stable-phone-overlay *
Linux-mako Ubuntu wily *
Linux-mako Ubuntu xenial *
Linux-mako Ubuntu yakkety *
Linux-manta Ubuntu saucy *
Linux-manta Ubuntu trusty *
Linux-manta Ubuntu upstream *
Linux-manta Ubuntu utopic *
Linux-manta Ubuntu vivid *
Linux-manta Ubuntu wily *
Linux-mvl-dove Ubuntu lucid *
Linux-mvl-dove Ubuntu upstream *
Linux-qcm-msm Ubuntu lucid *
Linux-qcm-msm Ubuntu precise *
Linux-qcm-msm Ubuntu quantal *
Linux-qcm-msm Ubuntu upstream *
Linux-raspi2 Ubuntu upstream *
Linux-raspi2 Ubuntu vivid/ubuntu-core *
Linux-snapdragon Ubuntu upstream *
Linux-ti-omap4 Ubuntu precise *
Linux-ti-omap4 Ubuntu quantal *
Linux-ti-omap4 Ubuntu saucy *
Linux-ti-omap4 Ubuntu upstream *

Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References