CVE Vulnerabilities

CVE-2015-0313

Use After Free

Published: Feb 02, 2015 | Modified: Jul 02, 2024
CVSS 3.x
9.8
CRITICAL
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
10 HIGH
AV:N/AC:L/Au:N/C:C/I:C/A:C
RedHat/V2
6.8 CRITICAL
AV:N/AC:M/Au:N/C:P/I:P/A:P
RedHat/V3
Ubuntu
MEDIUM

Use-after-free vulnerability in Adobe Flash Player before 13.0.0.269 and 14.x through 16.x before 16.0.0.305 on Windows and OS X and before 11.2.202.442 on Linux allows remote attackers to execute arbitrary code via unspecified vectors, as exploited in the wild in February 2015, a different vulnerability than CVE-2015-0315, CVE-2015-0320, and CVE-2015-0322.

Weakness

Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code.

Affected Software

Name Vendor Start Version End Version
Flash_player Adobe * 11.2.202.442 (excluding)
Adobe-flashplugin Ubuntu devel *
Adobe-flashplugin Ubuntu lucid *
Adobe-flashplugin Ubuntu precise *
Adobe-flashplugin Ubuntu trusty *
Adobe-flashplugin Ubuntu upstream *
Adobe-flashplugin Ubuntu utopic *
Flashplugin-nonfree Ubuntu devel *
Flashplugin-nonfree Ubuntu lucid *
Flashplugin-nonfree Ubuntu precise *
Flashplugin-nonfree Ubuntu trusty *
Flashplugin-nonfree Ubuntu upstream *
Flashplugin-nonfree Ubuntu utopic *

Extended Description

The use of previously-freed memory can have any number of adverse consequences, ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the flaw. The simplest way data corruption may occur involves the system’s reuse of the freed memory. Use-after-free errors have two common and sometimes overlapping causes:

In this scenario, the memory in question is allocated to another pointer validly at some point after it has been freed. The original pointer to the freed memory is used again and points to somewhere within the new allocation. As the data is changed, it corrupts the validly used memory; this induces undefined behavior in the process. If the newly allocated data happens to hold a class, in C++ for example, various function pointers may be scattered within the heap data. If one of these function pointers is overwritten with an address to valid shellcode, execution of arbitrary code can be achieved.

Potential Mitigations

References