CVE Vulnerabilities

CVE-2015-1007

Improper Restriction of Operations within the Bounds of a Memory Buffer

Published: Mar 25, 2019 | Modified: Oct 09, 2019
CVSS 3.x
7.8
HIGH
Source:
NVD
CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
CVSS 2.x
9.3 HIGH
AV:N/AC:M/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
Ubuntu

A specially crafted configuration file could be used to cause a stack-based buffer overflow condition in the OPCTest.exe, which may allow remote code execution on Opto 22 PAC Project Professional versions prior to R9.4008, PAC Project Basic versions prior to R9.4008, PAC Display Basic versions prior to R9.4g, PAC Display Professional versions prior to R9.4g, OptoOPCServer version R9.4c and prior that were installed by PAC Project installer, versions prior to R9.4008, and OptoDataLink version R9.4d and prior that were installed by PAC Project installer, versions prior to R9.4008. Opto 22 suggests upgrading to the new product version as soon as possible.

Weakness

The software performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.

Affected Software

Name Vendor Start Version End Version
Optodatalink Opto22 * r9.4d
Optoopcserver Opto22 * r9.4c
Pac_display Opto22 * *
Pac_display Opto22 * *
Pac_project Opto22 * *
Pac_project Opto22 * *

Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Run or compile the software using features or extensions that automatically provide a protection mechanism that mitigates or eliminates buffer overflows.

  • For example, certain compilers and extensions provide automatic buffer overflow detection mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64].

References