CVE Vulnerabilities

CVE-2015-3081

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

Published: May 13, 2015 | Modified: Apr 12, 2025
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
4.3 MEDIUM
AV:N/AC:M/Au:N/C:N/I:P/A:N
RedHat/V2
RedHat/V3
Ubuntu
MEDIUM

Race condition in Adobe Flash Player before 13.0.0.289 and 14.x through 17.x before 17.0.0.188 on Windows and OS X and before 11.2.202.460 on Linux, Adobe AIR before 17.0.0.172, Adobe AIR SDK before 17.0.0.172, and Adobe AIR SDK & Compiler before 17.0.0.172 allows attackers to bypass the Internet Explorer Protected Mode protection mechanism via unspecified vectors.

Weakness

The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.

Affected Software

Name Vendor Start Version End Version
Flash_player Adobe * 11.2.202.475 (including)
Adobe-flashplugin Ubuntu precise *
Adobe-flashplugin Ubuntu trusty *
Adobe-flashplugin Ubuntu upstream *
Adobe-flashplugin Ubuntu utopic *
Adobe-flashplugin Ubuntu vivid *
Flashplugin-nonfree Ubuntu devel *
Flashplugin-nonfree Ubuntu precise *
Flashplugin-nonfree Ubuntu trusty *
Flashplugin-nonfree Ubuntu upstream *
Flashplugin-nonfree Ubuntu utopic *
Flashplugin-nonfree Ubuntu vivid *

Extended Description

A race condition occurs within concurrent environments, and it is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc. A race condition violates these properties, which are closely related:

A race condition exists when an “interfering code sequence” can still access the shared resource, violating exclusivity. The interfering code sequence could be “trusted” or “untrusted.” A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product.

Potential Mitigations

  • Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
  • Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).

References