CVE Vulnerabilities

CVE-2015-5122

Use After Free

Published: Jul 14, 2015 | Modified: Jul 02, 2024
CVSS 3.x
9.8
CRITICAL
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
10 HIGH
AV:N/AC:L/Au:N/C:C/I:C/A:C
RedHat/V2
6.8 CRITICAL
AV:N/AC:M/Au:N/C:P/I:P/A:P
RedHat/V3
Ubuntu
MEDIUM

Use-after-free vulnerability in the DisplayObject class in the ActionScript 3 (AS3) implementation in Adobe Flash Player 13.x through 13.0.0.302 on Windows and OS X, 14.x through 18.0.0.203 on Windows and OS X, 11.x through 11.2.202.481 on Linux, and 12.x through 18.0.0.204 on Linux Chrome installations allows remote attackers to execute arbitrary code or cause a denial of service (memory corruption) via crafted Flash content that leverages improper handling of the opaqueBackground property, as exploited in the wild in July 2015.

Weakness

Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code.

Affected Software

Name Vendor Start Version End Version
Flash_player Adobe 13.0 (including) 13.0.0.302 (including)
Flash_player Adobe 18.0 (including) 18.0.0.203 (including)
Flash_player_desktop_runtime Adobe 18.0 (including) 18.0.0.203 (including)
Red Hat Enterprise Linux 5 Supplementary RedHat flash-plugin-0:11.2.202.491-1.el5 *
Supplementary for Red Hat Enterprise Linux 6 RedHat flash-plugin-0:11.2.202.491-1.el6_6 *
Adobe-flashplugin Ubuntu devel *
Adobe-flashplugin Ubuntu precise *
Adobe-flashplugin Ubuntu trusty *
Adobe-flashplugin Ubuntu upstream *
Adobe-flashplugin Ubuntu utopic *
Adobe-flashplugin Ubuntu vivid *
Flashplugin-nonfree Ubuntu devel *
Flashplugin-nonfree Ubuntu precise *
Flashplugin-nonfree Ubuntu trusty *
Flashplugin-nonfree Ubuntu upstream *
Flashplugin-nonfree Ubuntu utopic *
Flashplugin-nonfree Ubuntu vivid *

Extended Description

The use of previously-freed memory can have any number of adverse consequences, ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the flaw. The simplest way data corruption may occur involves the system’s reuse of the freed memory. Use-after-free errors have two common and sometimes overlapping causes:

In this scenario, the memory in question is allocated to another pointer validly at some point after it has been freed. The original pointer to the freed memory is used again and points to somewhere within the new allocation. As the data is changed, it corrupts the validly used memory; this induces undefined behavior in the process. If the newly allocated data happens to hold a class, in C++ for example, various function pointers may be scattered within the heap data. If one of these function pointers is overwritten with an address to valid shellcode, execution of arbitrary code can be achieved.

Potential Mitigations

References