CVE Vulnerabilities

CVE-2015-9262

Improper Restriction of Operations within the Bounds of a Memory Buffer

Published: Aug 01, 2018 | Modified: Apr 16, 2019
CVSS 3.x
9.8
CRITICAL
Source:
NVD
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
7.5 HIGH
AV:N/AC:L/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
4.5 LOW
CVSS:3.0/AV:L/AC:H/PR:N/UI:R/S:U/C:L/I:L/A:L
Ubuntu
MEDIUM

_XcursorThemeInherits in library.c in libXcursor before 1.1.15 allows remote attackers to cause denial of service or potentially code execution via a one-byte heap overflow.

Weakness

The product performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.

Affected Software

Name Vendor Start Version End Version
Debian_linux Debian 8.0 (including) 8.0 (including)
Red Hat Enterprise Linux 7 RedHat freeglut-0:3.0.0-8.el7 *
Red Hat Enterprise Linux 7 RedHat libdrm-0:2.4.91-3.el7 *
Red Hat Enterprise Linux 7 RedHat libepoxy-0:1.5.2-1.el7 *
Red Hat Enterprise Linux 7 RedHat libglvnd-1:1.0.1-0.8.git5baa1e5.el7 *
Red Hat Enterprise Linux 7 RedHat libinput-0:1.10.7-2.el7 *
Red Hat Enterprise Linux 7 RedHat libwacom-0:0.30-1.el7 *
Red Hat Enterprise Linux 7 RedHat libX11-0:1.6.5-2.el7 *
Red Hat Enterprise Linux 7 RedHat libxcb-0:1.13-1.el7 *
Red Hat Enterprise Linux 7 RedHat libXcursor-0:1.1.15-1.el7 *
Red Hat Enterprise Linux 7 RedHat libXfont-0:1.5.4-1.el7 *
Red Hat Enterprise Linux 7 RedHat libXfont2-0:2.0.3-1.el7 *
Red Hat Enterprise Linux 7 RedHat libXres-0:1.2.0-1.el7 *
Red Hat Enterprise Linux 7 RedHat mesa-0:18.0.5-3.el7 *
Red Hat Enterprise Linux 7 RedHat mesa-demos-0:8.3.0-10.el7 *
Red Hat Enterprise Linux 7 RedHat tigervnc-0:1.8.0-13.el7 *
Red Hat Enterprise Linux 7 RedHat vulkan-0:1.1.73.0-1.el7 *
Red Hat Enterprise Linux 7 RedHat xcb-proto-0:1.13-1.el7 *
Red Hat Enterprise Linux 7 RedHat xkeyboard-config-0:2.24-1.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-ati-0:18.0.1-1.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-dummy-0:0.3.7-1.el7.1 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-evdev-0:2.10.6-1.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-fbdev-0:0.5.0-1.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-intel-0:2.99.917-28.20180530.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-libinput-0:0.27.1-2.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-mouse-0:1.9.2-2.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-nouveau-1:1.0.15-1.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-openchrome-0:0.5.0-3.el7.1 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-qxl-0:0.1.5-4.el7.1 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-synaptics-0:1.9.0-2.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-v4l-0:0.2.0-49.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-vesa-0:2.4.0-1.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-vmmouse-0:13.1.0-1.el7.1 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-vmware-0:13.2.1-1.el7.1 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-void-0:1.4.1-2.el7.1 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-drv-wacom-0:0.36.1-1.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-font-utils-1:7.5-21.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-proto-devel-0:2018.4-1.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-server-0:1.20.1-3.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-utils-0:7.5-23.el7 *
Red Hat Enterprise Linux 7 RedHat xorg-x11-xkb-utils-0:7.7-14.el7 *
Libxcursor Ubuntu esm-infra/xenial *
Libxcursor Ubuntu trusty *
Libxcursor Ubuntu upstream *
Libxcursor Ubuntu xenial *

Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References