CVE Vulnerabilities

CVE-2016-4491

Improper Restriction of Operations within the Bounds of a Memory Buffer

Published: Feb 24, 2017 | Modified: Jul 28, 2017
CVSS 3.x
5.5
MEDIUM
Source:
NVD
CVSS:3.0/AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H
CVSS 2.x
4.3 MEDIUM
AV:N/AC:M/Au:N/C:N/I:N/A:P
RedHat/V2
RedHat/V3
CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
Ubuntu
LOW

The d_print_comp function in cp-demangle.c in libiberty allows remote attackers to cause a denial of service (segmentation fault and crash) via a crafted binary, which triggers infinite recursion and a buffer overflow, related to a node having itself as ancestor more than once.

Weakness

The product performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.

Affected Software

Name Vendor Start Version End Version
Libiberty Gnu * *
Binutils Ubuntu esm-infra/xenial *
Binutils Ubuntu precise *
Binutils Ubuntu precise/esm *
Binutils Ubuntu trusty *
Binutils Ubuntu upstream *
Binutils Ubuntu wily *
Binutils Ubuntu xenial *
Binutils Ubuntu yakkety *
Binutils Ubuntu zesty *
Binutils-h8300-hms Ubuntu artful *
Binutils-h8300-hms Ubuntu bionic *
Binutils-h8300-hms Ubuntu cosmic *
Binutils-h8300-hms Ubuntu devel *
Binutils-h8300-hms Ubuntu disco *
Binutils-h8300-hms Ubuntu eoan *
Binutils-h8300-hms Ubuntu esm-apps/bionic *
Binutils-h8300-hms Ubuntu esm-apps/focal *
Binutils-h8300-hms Ubuntu esm-apps/jammy *
Binutils-h8300-hms Ubuntu esm-apps/noble *
Binutils-h8300-hms Ubuntu esm-apps/xenial *
Binutils-h8300-hms Ubuntu focal *
Binutils-h8300-hms Ubuntu groovy *
Binutils-h8300-hms Ubuntu hirsute *
Binutils-h8300-hms Ubuntu impish *
Binutils-h8300-hms Ubuntu jammy *
Binutils-h8300-hms Ubuntu kinetic *
Binutils-h8300-hms Ubuntu lunar *
Binutils-h8300-hms Ubuntu mantic *
Binutils-h8300-hms Ubuntu noble *
Binutils-h8300-hms Ubuntu oracular *
Binutils-h8300-hms Ubuntu precise *
Binutils-h8300-hms Ubuntu trusty *
Binutils-h8300-hms Ubuntu wily *
Binutils-h8300-hms Ubuntu xenial *
Binutils-h8300-hms Ubuntu yakkety *
Binutils-h8300-hms Ubuntu zesty *
Gcc-arm-none-eabi Ubuntu artful *
Gcc-arm-none-eabi Ubuntu bionic *
Gcc-arm-none-eabi Ubuntu cosmic *
Gcc-arm-none-eabi Ubuntu esm-apps/bionic *
Gcc-arm-none-eabi Ubuntu esm-apps/xenial *
Gcc-arm-none-eabi Ubuntu trusty *
Gcc-arm-none-eabi Ubuntu wily *
Gcc-arm-none-eabi Ubuntu xenial *
Gcc-arm-none-eabi Ubuntu yakkety *
Gcc-arm-none-eabi Ubuntu zesty *
Gcc-h8300-hms Ubuntu artful *
Gcc-h8300-hms Ubuntu bionic *
Gcc-h8300-hms Ubuntu cosmic *
Gcc-h8300-hms Ubuntu devel *
Gcc-h8300-hms Ubuntu disco *
Gcc-h8300-hms Ubuntu eoan *
Gcc-h8300-hms Ubuntu esm-apps/bionic *
Gcc-h8300-hms Ubuntu esm-apps/focal *
Gcc-h8300-hms Ubuntu esm-apps/jammy *
Gcc-h8300-hms Ubuntu esm-apps/noble *
Gcc-h8300-hms Ubuntu esm-apps/xenial *
Gcc-h8300-hms Ubuntu focal *
Gcc-h8300-hms Ubuntu groovy *
Gcc-h8300-hms Ubuntu hirsute *
Gcc-h8300-hms Ubuntu impish *
Gcc-h8300-hms Ubuntu jammy *
Gcc-h8300-hms Ubuntu kinetic *
Gcc-h8300-hms Ubuntu lunar *
Gcc-h8300-hms Ubuntu mantic *
Gcc-h8300-hms Ubuntu noble *
Gcc-h8300-hms Ubuntu oracular *
Gcc-h8300-hms Ubuntu precise *
Gcc-h8300-hms Ubuntu trusty *
Gcc-h8300-hms Ubuntu wily *
Gcc-h8300-hms Ubuntu xenial *
Gcc-h8300-hms Ubuntu yakkety *
Gcc-h8300-hms Ubuntu zesty *
Gccxml Ubuntu esm-apps/xenial *
Gccxml Ubuntu precise *
Gccxml Ubuntu trusty *
Gccxml Ubuntu wily *
Gccxml Ubuntu xenial *
Gdb Ubuntu artful *
Gdb Ubuntu bionic *
Gdb Ubuntu cosmic *
Gdb Ubuntu devel *
Gdb Ubuntu disco *
Gdb Ubuntu eoan *
Gdb Ubuntu focal *
Gdb Ubuntu groovy *
Gdb Ubuntu hirsute *
Gdb Ubuntu impish *
Gdb Ubuntu jammy *
Gdb Ubuntu kinetic *
Gdb Ubuntu lunar *
Gdb Ubuntu mantic *
Gdb Ubuntu noble *
Gdb Ubuntu oracular *
Gdb Ubuntu precise *
Gdb Ubuntu trusty *
Gdb Ubuntu vivid/stable-phone-overlay *
Gdb Ubuntu vivid/ubuntu-core *
Gdb Ubuntu wily *
Gdb Ubuntu xenial *
Gdb Ubuntu yakkety *
Gdb Ubuntu zesty *
Ht Ubuntu artful *
Ht Ubuntu esm-apps/xenial *
Ht Ubuntu precise *
Ht Ubuntu trusty *
Ht Ubuntu wily *
Ht Ubuntu xenial *
Ht Ubuntu yakkety *
Ht Ubuntu zesty *
Libiberty Ubuntu trusty *
Libiberty Ubuntu wily *
Libiberty Ubuntu xenial *
Libiberty Ubuntu yakkety *
Libiberty Ubuntu zesty *
Nescc Ubuntu artful *
Nescc Ubuntu bionic *
Nescc Ubuntu cosmic *
Nescc Ubuntu disco *
Nescc Ubuntu eoan *
Nescc Ubuntu esm-apps/bionic *
Nescc Ubuntu esm-apps/focal *
Nescc Ubuntu esm-apps/jammy *
Nescc Ubuntu esm-apps/xenial *
Nescc Ubuntu focal *
Nescc Ubuntu groovy *
Nescc Ubuntu hirsute *
Nescc Ubuntu impish *
Nescc Ubuntu jammy *
Nescc Ubuntu kinetic *
Nescc Ubuntu lunar *
Nescc Ubuntu mantic *
Nescc Ubuntu trusty *
Nescc Ubuntu wily *
Nescc Ubuntu xenial *
Nescc Ubuntu yakkety *
Nescc Ubuntu zesty *
Sdcc Ubuntu artful *
Sdcc Ubuntu bionic *
Sdcc Ubuntu cosmic *
Sdcc Ubuntu esm-apps/bionic *
Sdcc Ubuntu esm-apps/xenial *
Sdcc Ubuntu precise *
Sdcc Ubuntu trusty *
Sdcc Ubuntu wily *
Sdcc Ubuntu xenial *
Sdcc Ubuntu yakkety *
Sdcc Ubuntu zesty *
Valgrind Ubuntu artful *
Valgrind Ubuntu bionic *
Valgrind Ubuntu cosmic *
Valgrind Ubuntu devel *
Valgrind Ubuntu disco *
Valgrind Ubuntu eoan *
Valgrind Ubuntu focal *
Valgrind Ubuntu groovy *
Valgrind Ubuntu hirsute *
Valgrind Ubuntu impish *
Valgrind Ubuntu jammy *
Valgrind Ubuntu kinetic *
Valgrind Ubuntu lunar *
Valgrind Ubuntu mantic *
Valgrind Ubuntu noble *
Valgrind Ubuntu oracular *
Valgrind Ubuntu precise *
Valgrind Ubuntu trusty *
Valgrind Ubuntu wily *
Valgrind Ubuntu xenial *
Valgrind Ubuntu yakkety *
Valgrind Ubuntu zesty *

Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References