CVE Vulnerabilities

CVE-2016-5195

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

Published: Nov 10, 2016 | Modified: Jul 24, 2024
CVSS 3.x
7
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
7.2 HIGH
AV:L/AC:L/Au:N/C:C/I:C/A:C
RedHat/V2
6.9 IMPORTANT
AV:L/AC:M/Au:N/C:C/I:C/A:C
RedHat/V3
7.8 IMPORTANT
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
Ubuntu
HIGH

Race condition in mm/gup.c in the Linux kernel 2.x through 4.x before 4.8.3 allows local users to gain privileges by leveraging incorrect handling of a copy-on-write (COW) feature to write to a read-only memory mapping, as exploited in the wild in October 2016, aka Dirty COW.

Weakness

The product contains a code sequence that can run concurrently with other code, and the code sequence requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence that is operating concurrently.

Affected Software

Name Vendor Start Version End Version
Ubuntu_linux Canonical 12.04 (including) 12.04 (including)
Ubuntu_linux Canonical 14.04 (including) 14.04 (including)
Ubuntu_linux Canonical 16.04 (including) 16.04 (including)
Ubuntu_linux Canonical 16.10 (including) 16.10 (including)
Linux Ubuntu precise *
Linux Ubuntu trusty *
Linux Ubuntu upstream *
Linux Ubuntu vivid/ubuntu-core *
Linux Ubuntu xenial *
Linux Ubuntu yakkety *
Linux-armadaxp Ubuntu precise *
Linux-armadaxp Ubuntu upstream *
Linux-aws Ubuntu upstream *
Linux-flo Ubuntu esm-apps/xenial *
Linux-flo Ubuntu trusty *
Linux-flo Ubuntu upstream *
Linux-flo Ubuntu vivid/stable-phone-overlay *
Linux-flo Ubuntu xenial *
Linux-flo Ubuntu yakkety *
Linux-gke Ubuntu upstream *
Linux-goldfish Ubuntu esm-apps/xenial *
Linux-goldfish Ubuntu trusty *
Linux-goldfish Ubuntu upstream *
Linux-goldfish Ubuntu xenial *
Linux-goldfish Ubuntu yakkety *
Linux-goldfish Ubuntu zesty *
Linux-grouper Ubuntu trusty *
Linux-grouper Ubuntu upstream *
Linux-hwe Ubuntu upstream *
Linux-hwe-edge Ubuntu upstream *
Linux-linaro-omap Ubuntu precise *
Linux-linaro-omap Ubuntu upstream *
Linux-linaro-shared Ubuntu precise *
Linux-linaro-shared Ubuntu upstream *
Linux-linaro-vexpress Ubuntu precise *
Linux-linaro-vexpress Ubuntu upstream *
Linux-lts-quantal Ubuntu precise *
Linux-lts-quantal Ubuntu precise/esm *
Linux-lts-quantal Ubuntu upstream *
Linux-lts-raring Ubuntu precise *
Linux-lts-raring Ubuntu precise/esm *
Linux-lts-raring Ubuntu upstream *
Linux-lts-saucy Ubuntu precise *
Linux-lts-saucy Ubuntu precise/esm *
Linux-lts-saucy Ubuntu upstream *
Linux-lts-trusty Ubuntu precise *
Linux-lts-trusty Ubuntu upstream *
Linux-lts-utopic Ubuntu trusty *
Linux-lts-utopic Ubuntu upstream *
Linux-lts-vivid Ubuntu trusty *
Linux-lts-vivid Ubuntu upstream *
Linux-lts-wily Ubuntu trusty *
Linux-lts-wily Ubuntu upstream *
Linux-lts-xenial Ubuntu trusty *
Linux-lts-xenial Ubuntu upstream *
Linux-maguro Ubuntu trusty *
Linux-maguro Ubuntu upstream *
Linux-mako Ubuntu esm-apps/xenial *
Linux-mako Ubuntu trusty *
Linux-mako Ubuntu upstream *
Linux-mako Ubuntu vivid/stable-phone-overlay *
Linux-mako Ubuntu xenial *
Linux-mako Ubuntu yakkety *
Linux-manta Ubuntu trusty *
Linux-manta Ubuntu upstream *
Linux-qcm-msm Ubuntu precise *
Linux-qcm-msm Ubuntu upstream *
Linux-raspi2 Ubuntu upstream *
Linux-raspi2 Ubuntu vivid/ubuntu-core *
Linux-raspi2 Ubuntu xenial *
Linux-raspi2 Ubuntu yakkety *
Linux-snapdragon Ubuntu upstream *
Linux-snapdragon Ubuntu xenial *
Linux-snapdragon Ubuntu yakkety *
Linux-ti-omap4 Ubuntu precise *
Linux-ti-omap4 Ubuntu upstream *
Red Hat Enterprise Linux 5 RedHat kernel-0:2.6.18-416.el5 *
Red Hat Enterprise Linux 5.6 Long Life RedHat kernel-0:2.6.18-238.57.1.el5 *
Red Hat Enterprise Linux 5.9 Long Life RedHat kernel-0:2.6.18-348.32.1.el5 *
Red Hat Enterprise Linux 6 RedHat kernel-0:2.6.32-642.6.2.el6 *
Red Hat Enterprise Linux 6.2 Advanced Update Support RedHat kernel-0:2.6.32-220.68.1.el6 *
Red Hat Enterprise Linux 6.4 Advanced Update Support RedHat kernel-0:2.6.32-358.75.1.el6 *
Red Hat Enterprise Linux 6.5 Advanced Update Support RedHat kernel-0:2.6.32-431.75.1.el6 *
Red Hat Enterprise Linux 6.5 Telco Extended Update Support RedHat kernel-0:2.6.32-431.75.1.el6 *
Red Hat Enterprise Linux 6.6 Extended Update Support RedHat kernel-0:2.6.32-504.54.1.el6 *
Red Hat Enterprise Linux 6.7 Extended Update Support RedHat kernel-0:2.6.32-573.35.2.el6 *
Red Hat Enterprise Linux 7 RedHat kernel-rt-0:3.10.0-327.36.3.rt56.238.el7 *
Red Hat Enterprise Linux 7 RedHat kernel-0:3.10.0-327.36.3.el7 *
Red Hat Enterprise Linux 7 RedHat kernel-aarch64-0:4.5.0-15.2.1.el7 *
Red Hat Enterprise Linux 7.1 Extended Update Support RedHat kernel-0:3.10.0-229.42.2.ael7b *
Red Hat Enterprise MRG 2 RedHat kernel-rt-1:3.10.0-327.rt56.198.el6rt *

Extended Description

This can have security implications when the expected synchronization is in security-critical code, such as recording whether a user is authenticated or modifying important state information that should not be influenced by an outsider. A race condition occurs within concurrent environments, and is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc. A race condition violates these properties, which are closely related:

A race condition exists when an “interfering code sequence” can still access the shared resource, violating exclusivity. Programmers may assume that certain code sequences execute too quickly to be affected by an interfering code sequence; when they are not, this violates atomicity. For example, the single “x++” statement may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read (the original value of x), followed by a computation (x+1), followed by a write (save the result to x). The interfering code sequence could be “trusted” or “untrusted.” A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product.

Potential Mitigations

  • Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
  • Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).

References