CVE Vulnerabilities

CVE-2016-6480

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

Published: Aug 06, 2016 | Modified: Apr 12, 2025
CVSS 3.x
5.1
MEDIUM
Source:
NVD
CVSS:3.0/AV:L/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS 2.x
4.7 MEDIUM
AV:L/AC:M/Au:N/C:N/I:N/A:C
RedHat/V2
4.7 MODERATE
AV:L/AC:M/Au:N/C:N/I:N/A:C
RedHat/V3
5.1 MODERATE
CVSS:3.0/AV:L/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H
Ubuntu
MEDIUM

Race condition in the ioctl_send_fib function in drivers/scsi/aacraid/commctrl.c in the Linux kernel through 4.7 allows local users to cause a denial of service (out-of-bounds access or system crash) by changing a certain size value, aka a double fetch vulnerability.

Weakness

The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.

Affected Software

Name Vendor Start Version End Version
Linux_kernel Linux * 4.7 (including)
Red Hat Enterprise Linux 6 RedHat kernel-0:2.6.32-696.el6 *
Red Hat Enterprise Linux 7 RedHat kernel-rt-0:3.10.0-514.rt56.420.el7 *
Red Hat Enterprise Linux 7 RedHat kernel-0:3.10.0-514.el7 *
Linux Ubuntu esm-infra-legacy/trusty *
Linux Ubuntu esm-infra/xenial *
Linux Ubuntu precise *
Linux Ubuntu precise/esm *
Linux Ubuntu trusty *
Linux Ubuntu trusty/esm *
Linux Ubuntu upstream *
Linux Ubuntu vivid/ubuntu-core *
Linux Ubuntu xenial *
Linux-armadaxp Ubuntu precise *
Linux-armadaxp Ubuntu upstream *
Linux-aws Ubuntu upstream *
Linux-flo Ubuntu trusty *
Linux-flo Ubuntu upstream *
Linux-flo Ubuntu vivid/stable-phone-overlay *
Linux-flo Ubuntu xenial *
Linux-flo Ubuntu yakkety *
Linux-gke Ubuntu upstream *
Linux-goldfish Ubuntu trusty *
Linux-goldfish Ubuntu upstream *
Linux-goldfish Ubuntu xenial *
Linux-goldfish Ubuntu yakkety *
Linux-goldfish Ubuntu zesty *
Linux-grouper Ubuntu trusty *
Linux-grouper Ubuntu upstream *
Linux-hwe Ubuntu upstream *
Linux-hwe-edge Ubuntu upstream *
Linux-linaro-omap Ubuntu precise *
Linux-linaro-omap Ubuntu upstream *
Linux-linaro-shared Ubuntu precise *
Linux-linaro-shared Ubuntu upstream *
Linux-linaro-vexpress Ubuntu precise *
Linux-linaro-vexpress Ubuntu upstream *
Linux-lts-quantal Ubuntu precise *
Linux-lts-quantal Ubuntu precise/esm *
Linux-lts-quantal Ubuntu upstream *
Linux-lts-raring Ubuntu precise *
Linux-lts-raring Ubuntu precise/esm *
Linux-lts-raring Ubuntu upstream *
Linux-lts-saucy Ubuntu precise *
Linux-lts-saucy Ubuntu precise/esm *
Linux-lts-saucy Ubuntu upstream *
Linux-lts-trusty Ubuntu precise *
Linux-lts-trusty Ubuntu precise/esm *
Linux-lts-trusty Ubuntu upstream *
Linux-lts-utopic Ubuntu trusty *
Linux-lts-utopic Ubuntu upstream *
Linux-lts-vivid Ubuntu trusty *
Linux-lts-vivid Ubuntu upstream *
Linux-lts-wily Ubuntu trusty *
Linux-lts-wily Ubuntu upstream *
Linux-lts-xenial Ubuntu esm-infra-legacy/trusty *
Linux-lts-xenial Ubuntu trusty *
Linux-lts-xenial Ubuntu trusty/esm *
Linux-lts-xenial Ubuntu upstream *
Linux-maguro Ubuntu trusty *
Linux-maguro Ubuntu upstream *
Linux-mako Ubuntu trusty *
Linux-mako Ubuntu upstream *
Linux-mako Ubuntu vivid/stable-phone-overlay *
Linux-mako Ubuntu xenial *
Linux-mako Ubuntu yakkety *
Linux-manta Ubuntu trusty *
Linux-manta Ubuntu upstream *
Linux-qcm-msm Ubuntu precise *
Linux-qcm-msm Ubuntu upstream *
Linux-raspi2 Ubuntu upstream *
Linux-raspi2 Ubuntu vivid/ubuntu-core *
Linux-raspi2 Ubuntu xenial *
Linux-snapdragon Ubuntu upstream *
Linux-snapdragon Ubuntu xenial *
Linux-ti-omap4 Ubuntu precise *
Linux-ti-omap4 Ubuntu upstream *

Extended Description

A race condition occurs within concurrent environments, and it is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc. A race condition violates these properties, which are closely related:

A race condition exists when an “interfering code sequence” can still access the shared resource, violating exclusivity. The interfering code sequence could be “trusted” or “untrusted.” A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product.

Potential Mitigations

  • Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
  • Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).

References