CVE Vulnerabilities

CVE-2016-6981

Use After Free

Published: Oct 13, 2016 | Modified: Nov 18, 2022
CVSS 3.x
8.8
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
CVSS 2.x
9.3 HIGH
AV:N/AC:M/Au:N/C:C/I:C/A:C
RedHat/V2
6.8 CRITICAL
AV:N/AC:M/Au:N/C:P/I:P/A:P
RedHat/V3
8.8 CRITICAL
CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM

Use-after-free vulnerability in Adobe Flash Player before 18.0.0.382 and 19.x through 23.x before 23.0.0.185 on Windows and OS X and before 11.2.202.637 on Linux allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2016-6987.

Weakness

Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code.

Affected Software

Name Vendor Start Version End Version
Flash_player Adobe * 23.0.0.162 (including)
Red Hat Enterprise Linux 5 Supplementary RedHat flash-plugin-0:11.2.202.637-1.el5_11 *
Red Hat Enterprise Linux 6 Supplementary RedHat flash-plugin-0:11.2.202.637-1.el6_8 *
Adobe-flashplugin Ubuntu devel *
Adobe-flashplugin Ubuntu precise *
Adobe-flashplugin Ubuntu trusty *
Adobe-flashplugin Ubuntu upstream *
Adobe-flashplugin Ubuntu xenial *
Flashplugin-nonfree Ubuntu devel *
Flashplugin-nonfree Ubuntu precise *
Flashplugin-nonfree Ubuntu trusty *
Flashplugin-nonfree Ubuntu upstream *
Flashplugin-nonfree Ubuntu xenial *

Extended Description

The use of previously-freed memory can have any number of adverse consequences, ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the flaw. The simplest way data corruption may occur involves the system’s reuse of the freed memory. Use-after-free errors have two common and sometimes overlapping causes:

In this scenario, the memory in question is allocated to another pointer validly at some point after it has been freed. The original pointer to the freed memory is used again and points to somewhere within the new allocation. As the data is changed, it corrupts the validly used memory; this induces undefined behavior in the process. If the newly allocated data happens to hold a class, in C++ for example, various function pointers may be scattered within the heap data. If one of these function pointers is overwritten with an address to valid shellcode, execution of arbitrary code can be achieved.

Potential Mitigations

References