CVE Vulnerabilities

CVE-2016-8633

Improper Restriction of Operations within the Bounds of a Memory Buffer

Published: Nov 28, 2016 | Modified: Apr 12, 2025
CVSS 3.x
6.8
MEDIUM
Source:
NVD
CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
6.2 MEDIUM
AV:L/AC:H/Au:N/C:C/I:C/A:C
RedHat/V2
5.9 IMPORTANT
AV:L/AC:M/Au:N/C:P/I:P/A:C
RedHat/V3
6.8 IMPORTANT
CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM

drivers/firewire/net.c in the Linux kernel before 4.8.7, in certain unusual hardware configurations, allows remote attackers to execute arbitrary code via crafted fragmented packets.

Weakness

The product performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.

Affected Software

Name Vendor Start Version End Version
Linux_kernel Linux * 4.8.6 (including)
Red Hat Enterprise Linux 7 RedHat kernel-rt-0:3.10.0-862.rt56.804.el7 *
Red Hat Enterprise Linux 7 RedHat kernel-0:3.10.0-862.el7 *
Red Hat Enterprise Linux 7.4 Extended Update Support RedHat kernel-0:3.10.0-693.47.2.el7 *
Red Hat Enterprise MRG 2 RedHat kernel-rt-1:3.10.0-693.47.2.rt56.641.el6rt *
Linux Ubuntu esm-infra-legacy/trusty *
Linux Ubuntu esm-infra/xenial *
Linux Ubuntu focal *
Linux Ubuntu precise *
Linux Ubuntu precise/esm *
Linux Ubuntu trusty *
Linux Ubuntu trusty/esm *
Linux Ubuntu upstream *
Linux Ubuntu vivid/ubuntu-core *
Linux Ubuntu xenial *
Linux Ubuntu yakkety *
Linux-armadaxp Ubuntu precise *
Linux-armadaxp Ubuntu upstream *
Linux-aws Ubuntu focal *
Linux-aws Ubuntu upstream *
Linux-aws-5.15 Ubuntu focal *
Linux-aws-5.4 Ubuntu bionic *
Linux-aws-fips Ubuntu trusty *
Linux-aws-fips Ubuntu xenial *
Linux-aws-hwe Ubuntu xenial *
Linux-azure Ubuntu esm-infra/bionic *
Linux-azure Ubuntu focal *
Linux-azure Ubuntu upstream *
Linux-azure-4.15 Ubuntu bionic *
Linux-azure-5.15 Ubuntu focal *
Linux-azure-5.4 Ubuntu bionic *
Linux-azure-6.11 Ubuntu noble *
Linux-azure-fde Ubuntu esm-infra/focal *
Linux-azure-fde Ubuntu focal *
Linux-azure-fde-5.15 Ubuntu esm-infra/focal *
Linux-azure-fde-5.15 Ubuntu focal *
Linux-azure-fips Ubuntu trusty *
Linux-azure-fips Ubuntu xenial *
Linux-bluefield Ubuntu focal *
Linux-euclid Ubuntu upstream *
Linux-flo Ubuntu trusty *
Linux-flo Ubuntu upstream *
Linux-flo Ubuntu vivid/stable-phone-overlay *
Linux-flo Ubuntu xenial *
Linux-flo Ubuntu yakkety *
Linux-gcp Ubuntu esm-infra/bionic *
Linux-gcp Ubuntu focal *
Linux-gcp Ubuntu upstream *
Linux-gcp-4.15 Ubuntu bionic *
Linux-gcp-5.15 Ubuntu focal *
Linux-gcp-5.4 Ubuntu bionic *
Linux-gcp-6.11 Ubuntu noble *
Linux-gcp-fips Ubuntu trusty *
Linux-gcp-fips Ubuntu xenial *
Linux-gke Ubuntu esm-infra/focal *
Linux-gke Ubuntu focal *
Linux-gke Ubuntu upstream *
Linux-gkeop Ubuntu esm-infra/focal *
Linux-gkeop Ubuntu focal *
Linux-goldfish Ubuntu trusty *
Linux-goldfish Ubuntu upstream *
Linux-goldfish Ubuntu xenial *
Linux-goldfish Ubuntu yakkety *
Linux-goldfish Ubuntu zesty *
Linux-grouper Ubuntu trusty *
Linux-grouper Ubuntu upstream *
Linux-hwe Ubuntu esm-infra/bionic *
Linux-hwe Ubuntu upstream *
Linux-hwe-5.15 Ubuntu focal *
Linux-hwe-5.4 Ubuntu bionic *
Linux-hwe-6.11 Ubuntu noble *
Linux-hwe-edge Ubuntu esm-infra/bionic *
Linux-hwe-edge Ubuntu upstream *
Linux-ibm Ubuntu focal *
Linux-ibm-5.15 Ubuntu focal *
Linux-ibm-5.4 Ubuntu bionic *
Linux-intel-iot-realtime Ubuntu jammy *
Linux-intel-iotg-5.15 Ubuntu focal *
Linux-iot Ubuntu focal *
Linux-kvm Ubuntu focal *
Linux-kvm Ubuntu upstream *
Linux-linaro-omap Ubuntu precise *
Linux-linaro-omap Ubuntu upstream *
Linux-linaro-shared Ubuntu precise *
Linux-linaro-shared Ubuntu upstream *
Linux-linaro-vexpress Ubuntu precise *
Linux-linaro-vexpress Ubuntu upstream *
Linux-lowlatency-hwe-5.15 Ubuntu focal *
Linux-lowlatency-hwe-6.11 Ubuntu noble *
Linux-lts-quantal Ubuntu precise *
Linux-lts-quantal Ubuntu precise/esm *
Linux-lts-quantal Ubuntu upstream *
Linux-lts-raring Ubuntu precise *
Linux-lts-raring Ubuntu precise/esm *
Linux-lts-raring Ubuntu upstream *
Linux-lts-saucy Ubuntu precise *
Linux-lts-saucy Ubuntu precise/esm *
Linux-lts-saucy Ubuntu upstream *
Linux-lts-trusty Ubuntu precise *
Linux-lts-trusty Ubuntu upstream *
Linux-lts-utopic Ubuntu trusty *
Linux-lts-utopic Ubuntu upstream *
Linux-lts-vivid Ubuntu trusty *
Linux-lts-vivid Ubuntu trusty/esm *
Linux-lts-vivid Ubuntu upstream *
Linux-lts-wily Ubuntu trusty *
Linux-lts-wily Ubuntu upstream *
Linux-lts-xenial Ubuntu trusty *
Linux-lts-xenial Ubuntu upstream *
Linux-maguro Ubuntu trusty *
Linux-maguro Ubuntu upstream *
Linux-mako Ubuntu trusty *
Linux-mako Ubuntu upstream *
Linux-mako Ubuntu vivid/stable-phone-overlay *
Linux-mako Ubuntu xenial *
Linux-mako Ubuntu yakkety *
Linux-manta Ubuntu trusty *
Linux-manta Ubuntu upstream *
Linux-nvidia-tegra-5.15 Ubuntu focal *
Linux-oem Ubuntu esm-infra/bionic *
Linux-oem Ubuntu upstream *
Linux-oracle Ubuntu bionic *
Linux-oracle Ubuntu focal *
Linux-oracle Ubuntu xenial *
Linux-oracle-5.15 Ubuntu focal *
Linux-oracle-5.4 Ubuntu bionic *
Linux-qcm-msm Ubuntu precise *
Linux-qcm-msm Ubuntu upstream *
Linux-raspi Ubuntu focal *
Linux-raspi-5.4 Ubuntu bionic *
Linux-raspi-realtime Ubuntu noble *
Linux-raspi2 Ubuntu esm-infra/focal *
Linux-raspi2 Ubuntu focal *
Linux-raspi2 Ubuntu upstream *
Linux-raspi2 Ubuntu vivid/ubuntu-core *
Linux-raspi2 Ubuntu xenial *
Linux-raspi2 Ubuntu yakkety *
Linux-realtime Ubuntu jammy *
Linux-realtime Ubuntu noble *
Linux-riscv Ubuntu esm-infra/focal *
Linux-riscv Ubuntu focal *
Linux-riscv Ubuntu jammy *
Linux-riscv Ubuntu noble *
Linux-riscv-5.15 Ubuntu focal *
Linux-snapdragon Ubuntu upstream *
Linux-snapdragon Ubuntu xenial *
Linux-snapdragon Ubuntu yakkety *
Linux-ti-omap4 Ubuntu precise *
Linux-ti-omap4 Ubuntu upstream *
Linux-xilinx-zynqmp Ubuntu focal *

Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References