CVE Vulnerabilities

CVE-2017-1000255

Out-of-bounds Write

Published: Oct 30, 2017 | Modified: Apr 11, 2018
CVSS 3.x
5.5
MEDIUM
Source:
NVD
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N
CVSS 2.x
6.6 MEDIUM
AV:L/AC:L/Au:N/C:N/I:C/A:C
RedHat/V2
RedHat/V3
6.1 MODERATE
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:H
Ubuntu
HIGH

On Linux running on PowerPC hardware (Power8 or later) a user process can craft a signal frame and then do a sigreturn so that the kernel will take an exception (interrupt), and use the r1 value from the signal frame as the kernel stack pointer. As part of the exception entry the content of the signal frame is written to the kernel stack, allowing an attacker to overwrite arbitrary locations with arbitrary values. The exception handling does produce an oops, and a panic if panic_on_oops=1, but only after kernel memory has been over written. This flaw was introduced in commit: 5d176f751ee3 (powerpc: tm: Enable transactional memory (TM) lazily for userspace) which was merged upstream into v4.9-rc1. Please note that kernels built with CONFIG_PPC_TRANSACTIONAL_MEM=n are not vulnerable.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Linux_kernel Linux - (including) - (including)
Red Hat Enterprise Linux 7 RedHat kernel-alt-0:4.14.0-49.el7a *
Linux Ubuntu artful *
Linux Ubuntu upstream *
Linux Ubuntu zesty *
Linux-armadaxp Ubuntu upstream *
Linux-aws Ubuntu upstream *
Linux-azure Ubuntu upstream *
Linux-euclid Ubuntu upstream *
Linux-flo Ubuntu esm-apps/xenial *
Linux-flo Ubuntu trusty *
Linux-flo Ubuntu upstream *
Linux-flo Ubuntu xenial *
Linux-gcp Ubuntu upstream *
Linux-gke Ubuntu upstream *
Linux-goldfish Ubuntu trusty *
Linux-goldfish Ubuntu upstream *
Linux-grouper Ubuntu trusty *
Linux-grouper Ubuntu upstream *
Linux-hwe Ubuntu upstream *
Linux-hwe Ubuntu xenial *
Linux-hwe-edge Ubuntu upstream *
Linux-hwe-edge Ubuntu xenial *
Linux-kvm Ubuntu upstream *
Linux-linaro-omap Ubuntu upstream *
Linux-linaro-shared Ubuntu upstream *
Linux-linaro-vexpress Ubuntu upstream *
Linux-lts-quantal Ubuntu precise/esm *
Linux-lts-quantal Ubuntu upstream *
Linux-lts-raring Ubuntu precise/esm *
Linux-lts-raring Ubuntu upstream *
Linux-lts-saucy Ubuntu precise/esm *
Linux-lts-saucy Ubuntu upstream *
Linux-lts-trusty Ubuntu upstream *
Linux-lts-utopic Ubuntu trusty *
Linux-lts-utopic Ubuntu upstream *
Linux-lts-vivid Ubuntu upstream *
Linux-lts-wily Ubuntu trusty *
Linux-lts-wily Ubuntu upstream *
Linux-lts-xenial Ubuntu upstream *
Linux-maguro Ubuntu trusty *
Linux-maguro Ubuntu upstream *
Linux-mako Ubuntu esm-apps/xenial *
Linux-mako Ubuntu trusty *
Linux-mako Ubuntu upstream *
Linux-mako Ubuntu xenial *
Linux-manta Ubuntu trusty *
Linux-manta Ubuntu upstream *
Linux-oem Ubuntu upstream *
Linux-qcm-msm Ubuntu upstream *
Linux-raspi2 Ubuntu upstream *
Linux-raspi2 Ubuntu vivid/ubuntu-core *
Linux-snapdragon Ubuntu upstream *
Linux-ti-omap4 Ubuntu upstream *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References