CVE Vulnerabilities

CVE-2017-12188

Stack-based Buffer Overflow

Published: Oct 11, 2017 | Modified: Apr 20, 2025
CVSS 3.x
7.8
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:C/C:H/I:H/A:H
CVSS 2.x
6.9 MEDIUM
AV:L/AC:M/Au:N/C:C/I:C/A:C
RedHat/V2
6.5 IMPORTANT
AV:A/AC:H/Au:S/C:C/I:C/A:C
RedHat/V3
7.6 IMPORTANT
CVSS:3.0/AV:A/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H
Ubuntu
HIGH
root.io logo minimus.io logo echo.ai logo

arch/x86/kvm/mmu.c in the Linux kernel through 4.13.5, when nested virtualisation is used, does not properly traverse guest pagetable entries to resolve a guest virtual address, which allows L1 guest OS users to execute arbitrary code on the host OS or cause a denial of service (incorrect index during page walking, and host OS crash), aka an MMU potential stack buffer overrun.

Weakness

A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Affected Software

NameVendorStart VersionEnd Version
Linux_kernelLinux4.6 (including)4.9.57 (excluding)
Linux_kernelLinux4.10 (including)4.13.8 (excluding)
Red Hat Enterprise Linux 7RedHatkernel-rt-0:3.10.0-693.21.1.rt56.639.el7*
Red Hat Enterprise Linux 7RedHatkernel-0:3.10.0-693.21.1.el7*
LinuxUbuntuartful*
LinuxUbuntuupstream*
LinuxUbuntuzesty*
Linux-awsUbuntuupstream*
Linux-aws-5.15Ubuntuupstream*
Linux-aws-5.4Ubuntuupstream*
Linux-aws-fipsUbuntutrusty*
Linux-aws-fipsUbuntuupstream*
Linux-aws-fipsUbuntuxenial*
Linux-aws-hweUbuntuupstream*
Linux-azureUbuntuesm-infra/bionic*
Linux-azureUbuntuesm-infra/xenial*
Linux-azureUbuntuupstream*
Linux-azureUbuntuxenial*
Linux-azure-4.15Ubuntuupstream*
Linux-azure-5.15Ubuntuupstream*
Linux-azure-5.4Ubuntuupstream*
Linux-azure-fdeUbuntuesm-infra/focal*
Linux-azure-fdeUbuntufocal*
Linux-azure-fdeUbuntuupstream*
Linux-azure-fde-5.15Ubuntuupstream*
Linux-azure-fipsUbuntutrusty*
Linux-azure-fipsUbuntuupstream*
Linux-azure-fipsUbuntuxenial*
Linux-bluefieldUbuntuupstream*
Linux-euclidUbuntuupstream*
Linux-fipsUbuntuupstream*
Linux-floUbuntutrusty*
Linux-floUbuntuupstream*
Linux-floUbuntuxenial*
Linux-gcpUbuntuesm-infra/bionic*
Linux-gcpUbuntuesm-infra/xenial*
Linux-gcpUbuntuupstream*
Linux-gcpUbuntuxenial*
Linux-gcp-4.15Ubuntuupstream*
Linux-gcp-5.15Ubuntuupstream*
Linux-gcp-5.4Ubuntuupstream*
Linux-gcp-fipsUbuntutrusty*
Linux-gcp-fipsUbuntuupstream*
Linux-gcp-fipsUbuntuxenial*
Linux-gkeUbuntuesm-infra/focal*
Linux-gkeUbuntufocal*
Linux-gkeUbuntuupstream*
Linux-gkeopUbuntuupstream*
Linux-gkeop-5.15Ubuntuupstream*
Linux-goldfishUbuntutrusty*
Linux-goldfishUbuntuupstream*
Linux-grouperUbuntutrusty*
Linux-grouperUbuntuupstream*
Linux-hweUbuntuesm-infra/bionic*
Linux-hweUbuntuesm-infra/xenial*
Linux-hweUbuntuupstream*
Linux-hweUbuntuxenial*
Linux-hwe-5.15Ubuntuupstream*
Linux-hwe-5.4Ubuntuupstream*
Linux-hwe-6.8Ubuntuupstream*
Linux-hwe-edgeUbuntuesm-infra/bionic*
Linux-hwe-edgeUbuntuesm-infra/xenial*
Linux-hwe-edgeUbuntuupstream*
Linux-hwe-edgeUbuntuxenial*
Linux-ibmUbuntuupstream*
Linux-ibm-5.15Ubuntuupstream*
Linux-ibm-5.4Ubuntuupstream*
Linux-intelUbuntuupstream*
Linux-intel-iot-realtimeUbuntujammy*
Linux-intel-iot-realtimeUbuntuupstream*
Linux-intel-iotgUbuntuupstream*
Linux-intel-iotg-5.15Ubuntuupstream*
Linux-iotUbuntuupstream*
Linux-kvmUbuntuupstream*
Linux-lowlatencyUbuntuupstream*
Linux-lowlatency-hwe-5.15Ubuntuupstream*
Linux-lowlatency-hwe-6.8Ubuntuupstream*
Linux-lts-quantalUbuntuprecise/esm*
Linux-lts-quantalUbuntuupstream*
Linux-lts-raringUbuntuprecise/esm*
Linux-lts-raringUbuntuupstream*
Linux-lts-saucyUbuntuprecise/esm*
Linux-lts-saucyUbuntuupstream*
Linux-lts-trustyUbuntuupstream*
Linux-lts-utopicUbuntutrusty*
Linux-lts-utopicUbuntuupstream*
Linux-lts-vividUbuntutrusty*
Linux-lts-vividUbuntutrusty/esm*
Linux-lts-vividUbuntuupstream*
Linux-lts-wilyUbuntutrusty*
Linux-lts-wilyUbuntuupstream*
Linux-lts-xenialUbuntuupstream*
Linux-maguroUbuntutrusty*
Linux-maguroUbuntuupstream*
Linux-makoUbuntutrusty*
Linux-makoUbuntuupstream*
Linux-makoUbuntuxenial*
Linux-mantaUbuntutrusty*
Linux-mantaUbuntuupstream*
Linux-nvidiaUbuntuupstream*
Linux-nvidia-6.5Ubuntuupstream*
Linux-nvidia-6.8Ubuntuupstream*
Linux-nvidia-lowlatencyUbuntuupstream*
Linux-oemUbuntuesm-infra/bionic*
Linux-oemUbuntuupstream*
Linux-oem-6.8Ubuntuupstream*
Linux-oracleUbuntuupstream*
Linux-oracle-5.15Ubuntuupstream*
Linux-oracle-5.4Ubuntuupstream*
Linux-raspiUbuntuupstream*
Linux-raspi-5.4Ubuntuupstream*
Linux-raspi-realtimeUbuntunoble*
Linux-raspi-realtimeUbuntuupstream*
Linux-raspi2Ubuntuartful*
Linux-raspi2Ubuntuesm-infra/focal*
Linux-raspi2Ubuntufocal*
Linux-raspi2Ubuntuupstream*
Linux-raspi2Ubuntuvivid/ubuntu-core*
Linux-raspi2Ubuntuzesty*
Linux-realtimeUbuntujammy*
Linux-realtimeUbuntuupstream*
Linux-riscvUbuntuesm-infra/focal*
Linux-riscvUbuntufocal*
Linux-riscvUbuntujammy*
Linux-riscvUbuntuupstream*
Linux-riscv-5.15Ubuntuupstream*
Linux-riscv-6.8Ubuntuupstream*
Linux-snapdragonUbuntuupstream*
Linux-xilinx-zynqmpUbuntuupstream*

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References