CVE Vulnerabilities

CVE-2017-13087

Use of Insufficiently Random Values

Published: Oct 17, 2017 | Modified: Oct 03, 2019
CVSS 3.x
5.3
MEDIUM
Source:
NVD
CVSS:3.0/AV:A/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N
CVSS 2.x
2.9 LOW
AV:A/AC:M/Au:N/C:N/I:P/A:N
RedHat/V2
RedHat/V3
8.1 IMPORTANT
CVSS:3.0/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N
Ubuntu

Wi-Fi Protected Access (WPA and WPA2) that support 802.11v allows reinstallation of the Group Temporal Key (GTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame, allowing an attacker within radio range to replay frames from access points to clients.

Weakness

The software uses insufficiently random numbers or values in a security context that depends on unpredictable numbers.

Affected Software

Name Vendor Start Version End Version
Ubuntu_linux Canonical 14.04 14.04
Ubuntu_linux Canonical 16.04 16.04
Ubuntu_linux Canonical 17.04 17.04
Debian_linux Debian 8.0 8.0
Debian_linux Debian 9.0 9.0
Freebsd Freebsd * *
Freebsd Freebsd 10 10
Freebsd Freebsd 10.4 10.4
Freebsd Freebsd 11 11
Freebsd Freebsd 11.1 11.1
Leap Opensuse 42.2 42.2
Leap Opensuse 42.3 42.3
Enterprise_linux_desktop Redhat 7 7
Enterprise_linux_server Redhat 7 7
Red Hat Enterprise Linux 6 RedHat wpa_supplicant-1:0.7.3-9.el6_9.2 *
Red Hat Enterprise Linux 7 RedHat wpa_supplicant-1:2.6-5.el7_4.1 *
Wpa Ubuntu devel *
Wpa Ubuntu esm-infra/xenial *
Wpa Ubuntu trusty *
Wpa Ubuntu trusty/esm *
Wpa Ubuntu vivid/ubuntu-core *
Wpa Ubuntu xenial *
Wpa Ubuntu zesty *

Potential Mitigations

  • Use a well-vetted algorithm that is currently considered to be strong by experts in the field, and select well-tested implementations with adequate length seeds.
  • In general, if a pseudo-random number generator is not advertised as being cryptographically secure, then it is probably a statistical PRNG and should not be used in security-sensitive contexts.
  • Pseudo-random number generators can produce predictable numbers if the generator is known and the seed can be guessed. A 256-bit seed is a good starting point for producing a “random enough” number.

References