CVE Vulnerabilities

CVE-2017-16290

Stack-based Buffer Overflow

Published: Jan 11, 2023 | Modified: Jan 19, 2023
CVSS 3.x
9.9
CRITICAL
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

Multiple exploitable buffer overflow vulnerabilities exist in the PubNub message handler for the cc channel of Insteon Hub running firmware version 1012. Specially crafted commands sent through the PubNub service can cause a stack-based buffer overflow overwriting arbitrary data. An attacker should send an authenticated HTTP request to trigger this vulnerability. In cmd s_sun, at 0x9d01980c, the value for the sunrise key is copied using strcpy to the buffer at $sp+0x2d0.This buffer is 100 bytes large, sending anything longer will cause a buffer overflow.

Weakness

A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Affected Software

Name Vendor Start Version End Version
Hub_firmware Insteon 1012 (including) 1012 (including)

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References