CVE Vulnerabilities

CVE-2017-3223

Stack-based Buffer Overflow

Published: Jul 24, 2018 | Modified: Nov 21, 2024
CVSS 3.x
9.8
CRITICAL
Source:
NVD
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
7.5 HIGH
AV:N/AC:L/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
Ubuntu

Dahua IP camera products using firmware versions prior to V2.400.0000.14.R.20170713 include a version of the Sonia web interface that may be vulnerable to a stack buffer overflow. Dahua IP camera products include an application known as Sonia (/usr/bin/sonia) that provides the web interface and other services for controlling the IP camera remotely. Versions of Sonia included in firmware versions prior to DH_IPC-Consumer-Zi-Themis_Eng_P_V2.408.0000.11.R.20170621 do not validate input data length for the password field of the web interface. A remote, unauthenticated attacker may submit a crafted POST request to the IP cameras Sonia web interface that may lead to out-of-bounds memory operations and loss of availability or remote code execution. The issue was originally identified by the researcher in firmware version DH_IPC-HX1X2X-Themis_EngSpnFrn_N_V2.400.0000.30.R.20160803.

Weakness

A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Affected Software

Name Vendor Start Version End Version
Ip_camera_firmware Dahuasecurity * dh_ipc-ack-themis_eng_p_v2.400.0000.14.r.20170713.bin (excluding)

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References