CVE Vulnerabilities

CVE-2017-5427

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

Published: Jun 11, 2018 | Modified: Nov 21, 2024
CVSS 3.x
5.5
MEDIUM
Source:
NVD
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:H/A:N
CVSS 2.x
1.9 LOW
AV:L/AC:M/Au:N/C:N/I:P/A:N
RedHat/V2
RedHat/V3
Ubuntu
LOW

A non-existent chrome.manifest file will attempt to be loaded during startup from the primary installation directory. If a malicious user with local access puts chrome.manifest and other referenced files in this directory, they will be loaded and activated during startup. This could result in malicious software being added without consent or modification of referenced installed files. This vulnerability affects Firefox < 52.

Weakness

The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.

Affected Software

Name Vendor Start Version End Version
Firefox Mozilla * 52.0 (excluding)
Firefox Ubuntu precise *
Firefox Ubuntu trusty *
Firefox Ubuntu upstream *
Firefox Ubuntu xenial *
Firefox Ubuntu yakkety *
Firefox Ubuntu zesty *

Extended Description

A race condition occurs within concurrent environments, and it is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc. A race condition violates these properties, which are closely related:

A race condition exists when an “interfering code sequence” can still access the shared resource, violating exclusivity. The interfering code sequence could be “trusted” or “untrusted.” A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product.

Potential Mitigations

  • Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
  • Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).

References