CVE Vulnerabilities

CVE-2017-7936

Stack-based Buffer Overflow

Published: Aug 07, 2017 | Modified: Nov 21, 2024
CVSS 3.x
6.3
MEDIUM
Source:
NVD
CVSS:3.0/AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
4.4 MEDIUM
AV:L/AC:M/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
Ubuntu

A stack-based buffer overflow issue was discovered in NXP i.MX 50, i.MX 53, i.MX 6ULL, i.MX 6UltraLite, i.MX 6SoloLite, i.MX 6Solo, i.MX 6DualLite, i.MX 6SoloX, i.MX 6Dual, i.MX 6Quad, i.MX 6DualPlus, i.MX 6QuadPlus, Vybrid VF3xx, Vybrid VF5xx, and Vybrid VF6xx. When the device is configured in security enabled configuration, SDP could be used to download a small section of code to an unprotected region of memory.

Weakness

A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Affected Software

Name Vendor Start Version End Version
Vybrid_mvf30nn151cku26_firmware Nxp - (including) - (including)

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References