CVE Vulnerabilities

CVE-2017-8067

Out-of-bounds Write

Published: Apr 23, 2017 | Modified: Apr 20, 2025
CVSS 3.x
7.8
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
7.2 HIGH
AV:L/AC:L/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
5.5 MODERATE
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
Ubuntu
MEDIUM
root.io logo minimus.io logo echo.ai logo

drivers/char/virtio_console.c in the Linux kernel 4.9.x and 4.10.x before 4.10.12 interacts incorrectly with the CONFIG_VMAP_STACK option, which allows local users to cause a denial of service (system crash or memory corruption) or possibly have unspecified other impact by leveraging use of more than one virtual page for a DMA scatterlist.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

NameVendorStart VersionEnd Version
Linux_kernelLinux4.9 (including)4.9.24 (excluding)
Linux_kernelLinux4.10 (including)4.10.12 (excluding)
LinuxUbuntuprecise*
LinuxUbuntuupstream*
LinuxUbuntuzesty*
Linux-armadaxpUbuntuprecise*
Linux-armadaxpUbuntuupstream*
Linux-awsUbuntuupstream*
Linux-azureUbuntuupstream*
Linux-euclidUbuntuupstream*
Linux-floUbuntutrusty*
Linux-floUbuntuupstream*
Linux-floUbuntuvivid/stable-phone-overlay*
Linux-floUbuntuxenial*
Linux-floUbuntuyakkety*
Linux-gcpUbuntuupstream*
Linux-gkeUbuntuupstream*
Linux-goldfishUbuntutrusty*
Linux-goldfishUbuntuupstream*
Linux-goldfishUbuntuxenial*
Linux-goldfishUbuntuyakkety*
Linux-goldfishUbuntuzesty*
Linux-grouperUbuntutrusty*
Linux-grouperUbuntuupstream*
Linux-hweUbuntuupstream*
Linux-hwe-edgeUbuntuupstream*
Linux-kvmUbuntuupstream*
Linux-linaro-omapUbuntuprecise*
Linux-linaro-omapUbuntuupstream*
Linux-linaro-sharedUbuntuprecise*
Linux-linaro-sharedUbuntuupstream*
Linux-linaro-vexpressUbuntuprecise*
Linux-linaro-vexpressUbuntuupstream*
Linux-lts-quantalUbuntuprecise*
Linux-lts-quantalUbuntuprecise/esm*
Linux-lts-quantalUbuntuupstream*
Linux-lts-raringUbuntuprecise*
Linux-lts-raringUbuntuprecise/esm*
Linux-lts-raringUbuntuupstream*
Linux-lts-saucyUbuntuprecise*
Linux-lts-saucyUbuntuprecise/esm*
Linux-lts-saucyUbuntuupstream*
Linux-lts-trustyUbuntuprecise*
Linux-lts-trustyUbuntuupstream*
Linux-lts-utopicUbuntutrusty*
Linux-lts-utopicUbuntuupstream*
Linux-lts-vividUbuntuupstream*
Linux-lts-wilyUbuntutrusty*
Linux-lts-wilyUbuntuupstream*
Linux-lts-xenialUbuntuupstream*
Linux-maguroUbuntutrusty*
Linux-maguroUbuntuupstream*
Linux-makoUbuntutrusty*
Linux-makoUbuntuupstream*
Linux-makoUbuntuvivid/stable-phone-overlay*
Linux-makoUbuntuxenial*
Linux-makoUbuntuyakkety*
Linux-mantaUbuntutrusty*
Linux-mantaUbuntuupstream*
Linux-qcm-msmUbuntuprecise*
Linux-qcm-msmUbuntuupstream*
Linux-raspi2Ubuntuupstream*
Linux-raspi2Ubuntuvivid/ubuntu-core*
Linux-raspi2Ubuntuzesty*
Linux-snapdragonUbuntuupstream*
Linux-ti-omap4Ubuntuprecise*
Linux-ti-omap4Ubuntuupstream*

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References