CVE Vulnerabilities

CVE-2017-8336

Improper Restriction of Operations within the Bounds of a Memory Buffer

Published: Jun 18, 2019 | Modified: Jun 21, 2019
CVSS 3.x
8.8
HIGH
Source:
NVD
CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
6.5 MEDIUM
AV:N/AC:L/Au:S/C:P/I:P/A:P
RedHat/V2
RedHat/V3
Ubuntu

An issue was discovered on Securifi Almond, Almond+, and Almond 2015 devices with firmware AL-R096. The device provides a user with the capability of adding new routes to the device. It seems that the POST parameters passed in this request to set up routes on the device can be set in such a way that would result in overflowing the stack set up and allow an attacker to control the $ra register stored on the stack. If the firmware version AL-R096 is dissected using binwalk tool, we obtain a cpio-root archive which contains the filesystem set up on the device that contains all the binaries. The binary goahead is the one that has the vulnerable function that recieves the values sent by the POST request. If we open this binary in IDA-pro we will notice that this follows a MIPS little endian format. The function sub_00420F38 in IDA pro is identified to be receiving the values sent in the POST request. The POST parameter gateway allows to overflow the stack and control the $ra register after 1546 characters. The value from this post parameter is then copied on the stack at address 0x00421348 as shown below. This allows an attacker to provide the payload of his/her choice and finally take control of the device.

Weakness

The product performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer.

Affected Software

Name Vendor Start Version End Version
Almond_2015_firmware Securifi al-r096 (including) al-r096 (including)

Extended Description

Certain languages allow direct addressing of memory locations and do not automatically ensure that these locations are valid for the memory buffer that is being referenced. This can cause read or write operations to be performed on memory locations that may be associated with other variables, data structures, or internal program data. As a result, an attacker may be able to execute arbitrary code, alter the intended control flow, read sensitive information, or cause the system to crash.

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References