CVE Vulnerabilities

CVE-2018-10528

Out-of-bounds Write

Published: Apr 29, 2018 | Modified: Oct 15, 2020
CVSS 3.x
8.8
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
CVSS 2.x
6.8 MEDIUM
AV:N/AC:M/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
5.3 MODERATE
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L
Ubuntu
MEDIUM

An issue was discovered in LibRaw 0.18.9. There is a stack-based buffer overflow in the utf2char function in libraw_cxx.cpp.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Ubuntu_linux Canonical 16.04 (including) 16.04 (including)
Ubuntu_linux Canonical 17.10 (including) 17.10 (including)
Ubuntu_linux Canonical 18.04 (including) 18.04 (including)
Darktable Ubuntu artful *
Darktable Ubuntu bionic *
Darktable Ubuntu cosmic *
Darktable Ubuntu disco *
Darktable Ubuntu eoan *
Darktable Ubuntu groovy *
Darktable Ubuntu hirsute *
Darktable Ubuntu impish *
Darktable Ubuntu kinetic *
Darktable Ubuntu lunar *
Darktable Ubuntu mantic *
Darktable Ubuntu trusty *
Darktable Ubuntu xenial *
Dcraw Ubuntu artful *
Dcraw Ubuntu bionic *
Dcraw Ubuntu cosmic *
Dcraw Ubuntu disco *
Dcraw Ubuntu eoan *
Dcraw Ubuntu groovy *
Dcraw Ubuntu hirsute *
Dcraw Ubuntu impish *
Dcraw Ubuntu kinetic *
Dcraw Ubuntu lunar *
Dcraw Ubuntu mantic *
Dcraw Ubuntu trusty *
Dcraw Ubuntu xenial *
Exactimage Ubuntu artful *
Exactimage Ubuntu bionic *
Exactimage Ubuntu cosmic *
Exactimage Ubuntu disco *
Exactimage Ubuntu eoan *
Exactimage Ubuntu groovy *
Exactimage Ubuntu hirsute *
Exactimage Ubuntu impish *
Exactimage Ubuntu kinetic *
Exactimage Ubuntu lunar *
Exactimage Ubuntu mantic *
Exactimage Ubuntu trusty *
Exactimage Ubuntu xenial *
Kodi Ubuntu artful *
Kodi Ubuntu bionic *
Kodi Ubuntu cosmic *
Kodi Ubuntu disco *
Kodi Ubuntu eoan *
Kodi Ubuntu groovy *
Kodi Ubuntu hirsute *
Kodi Ubuntu impish *
Kodi Ubuntu kinetic *
Kodi Ubuntu lunar *
Kodi Ubuntu mantic *
Kodi Ubuntu xenial *
Libraw Ubuntu artful *
Libraw Ubuntu bionic *
Libraw Ubuntu cosmic *
Libraw Ubuntu devel *
Libraw Ubuntu disco *
Libraw Ubuntu eoan *
Libraw Ubuntu focal *
Libraw Ubuntu groovy *
Libraw Ubuntu hirsute *
Libraw Ubuntu impish *
Libraw Ubuntu jammy *
Libraw Ubuntu kinetic *
Libraw Ubuntu lunar *
Libraw Ubuntu mantic *
Libraw Ubuntu noble *
Libraw Ubuntu oracular *
Libraw Ubuntu xenial *
Rawtherapee Ubuntu artful *
Rawtherapee Ubuntu bionic *
Rawtherapee Ubuntu cosmic *
Rawtherapee Ubuntu disco *
Rawtherapee Ubuntu eoan *
Rawtherapee Ubuntu groovy *
Rawtherapee Ubuntu hirsute *
Rawtherapee Ubuntu impish *
Rawtherapee Ubuntu kinetic *
Rawtherapee Ubuntu lunar *
Rawtherapee Ubuntu mantic *
Rawtherapee Ubuntu trusty *
Rawtherapee Ubuntu xenial *
Ufraw Ubuntu artful *
Ufraw Ubuntu bionic *
Ufraw Ubuntu cosmic *
Ufraw Ubuntu disco *
Ufraw Ubuntu trusty *
Ufraw Ubuntu xenial *
Xbmc Ubuntu trusty *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References