CVE Vulnerabilities

CVE-2018-10839

Stack-based Buffer Overflow

Published: Oct 16, 2018 | Modified: Feb 13, 2023
CVSS 3.x
6.5
MEDIUM
Source:
NVD
CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
CVSS 2.x
4 MEDIUM
AV:N/AC:L/Au:S/C:N/I:N/A:P
RedHat/V2
RedHat/V3
6.5 MODERATE
CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:H
Ubuntu
MEDIUM

Qemu emulator <= 3.0.0 built with the NE2000 NIC emulation support is vulnerable to an integer overflow, which could lead to buffer overflow issue. It could occur when receiving packets over the network. A user inside guest could use this flaw to crash the Qemu process resulting in DoS.

Weakness

A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Affected Software

Name Vendor Start Version End Version
Qemu Qemu * 3.0.0 (including)
Red Hat Enterprise Linux 6 RedHat qemu-kvm-2:0.12.1.2-2.506.el6_10.5 *
Qemu Ubuntu bionic *
Qemu Ubuntu cosmic *
Qemu Ubuntu devel *
Qemu Ubuntu disco *
Qemu Ubuntu eoan *
Qemu Ubuntu focal *
Qemu Ubuntu groovy *
Qemu Ubuntu hirsute *
Qemu Ubuntu trusty *
Qemu Ubuntu xenial *
Qemu-kvm Ubuntu precise/esm *

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References