CVE Vulnerabilities

CVE-2018-10840

Heap-based Buffer Overflow

Published: Jul 16, 2018 | Modified: Nov 21, 2024
CVSS 3.x
6.6
MEDIUM
Source:
NVD
CVSS:3.1/AV:P/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
7.2 HIGH
AV:L/AC:L/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
5.2 MODERATE
CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H
Ubuntu
LOW
root.io logo minimus.io logo echo.ai logo

Linux kernel is vulnerable to a heap-based buffer overflow in the fs/ext4/xattr.c:ext4_xattr_set_entry() function. An attacker could exploit this by operating on a mounted crafted ext4 image.

Weakness

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().

Affected Software

NameVendorStart VersionEnd Version
Linux_kernelLinux- (including)- (including)
Red Hat Enterprise Linux 7RedHatkernel-alt-0:4.14.0-115.5.1.el7a*
LinuxUbuntuartful*
LinuxUbuntubionic*
LinuxUbuntuesm-infra/bionic*
LinuxUbuntuupstream*
Linux-awsUbuntubionic*
Linux-awsUbuntuesm-infra/bionic*
Linux-awsUbuntuupstream*
Linux-azureUbuntubionic*
Linux-azureUbuntuesm-infra/bionic*
Linux-azureUbuntuesm-infra/xenial*
Linux-azureUbuntuupstream*
Linux-azureUbuntuxenial*
Linux-azure-edgeUbuntuupstream*
Linux-azure-edgeUbuntuxenial*
Linux-euclidUbuntuupstream*
Linux-floUbuntutrusty*
Linux-floUbuntuupstream*
Linux-floUbuntuxenial*
Linux-gcpUbuntubionic*
Linux-gcpUbuntuesm-infra/bionic*
Linux-gcpUbuntuesm-infra/xenial*
Linux-gcpUbuntuupstream*
Linux-gcpUbuntuxenial*
Linux-gkeUbuntuupstream*
Linux-gkeUbuntuxenial*
Linux-goldfishUbuntutrusty*
Linux-goldfishUbuntuupstream*
Linux-goldfishUbuntuxenial*
Linux-grouperUbuntutrusty*
Linux-grouperUbuntuupstream*
Linux-hweUbuntuesm-infra/xenial*
Linux-hweUbuntuupstream*
Linux-hweUbuntuxenial*
Linux-hwe-edgeUbuntuesm-infra/xenial*
Linux-hwe-edgeUbuntuupstream*
Linux-hwe-edgeUbuntuxenial*
Linux-kvmUbuntubionic*
Linux-kvmUbuntuesm-infra/bionic*
Linux-kvmUbuntuupstream*
Linux-lts-trustyUbuntuupstream*
Linux-lts-utopicUbuntutrusty*
Linux-lts-utopicUbuntuupstream*
Linux-lts-vividUbuntutrusty*
Linux-lts-vividUbuntuupstream*
Linux-lts-wilyUbuntutrusty*
Linux-lts-wilyUbuntuupstream*
Linux-lts-xenialUbuntuupstream*
Linux-maguroUbuntutrusty*
Linux-maguroUbuntuupstream*
Linux-makoUbuntutrusty*
Linux-makoUbuntuupstream*
Linux-makoUbuntuxenial*
Linux-mantaUbuntutrusty*
Linux-mantaUbuntuupstream*
Linux-oemUbuntubionic*
Linux-oemUbuntuesm-infra/bionic*
Linux-oemUbuntuupstream*
Linux-oemUbuntuxenial*
Linux-raspi2Ubuntuartful*
Linux-raspi2Ubuntubionic*
Linux-raspi2Ubuntuupstream*
Linux-snapdragonUbuntuupstream*

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References