A vulnerability has been identified in SINUMERIK 828D V4.7 (All versions < V4.7 SP6 HF1), SINUMERIK 840D sl V4.7 (All versions < V4.7 SP6 HF5), SINUMERIK 840D sl V4.8 (All versions < V4.8 SP3). The integrated VNC server on port 5900/tcp of the affected products could allow a remote attacker to execute code with privileged permissions on the system by sending specially crafted network requests to port 5900/tcp. Please note that this vulnerability is only exploitable if port 5900/tcp is manually opened in the firewall configuration of network port X130. The security vulnerability could be exploited by an attacker with network access to the affected devices and port. Successful exploitation requires no privileges and no user interaction. The vulnerability could allow an attacker to compromise confidentiality, integrity and availability of the VNC server. At the time of advisory publication no public exploitation of this security vulnerability was known.
Weakness
The product performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control.
Affected Software
Name |
Vendor |
Start Version |
End Version |
Sinumerik_828d_v4.7_firmware |
Siemens |
* |
4.7 (including) |
Potential Mitigations
- Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
- If possible, choose a language or compiler that performs automatic bounds checking.
- Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
- Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
- Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
- Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
- Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
- Understand the programming language’s underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, “not-a-number” calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
- Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.
References