CVE Vulnerabilities

CVE-2018-12029

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

Published: Jun 17, 2018 | Modified: Nov 21, 2024
CVSS 3.x
7
HIGH
Source:
NVD
CVSS:3.0/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
4.4 MEDIUM
AV:L/AC:M/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
7.8 IMPORTANT
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM

A race condition in the nginx module in Phusion Passenger 3.x through 5.x before 5.3.2 allows local escalation of privileges when a non-standard passenger_instance_registry_dir with insufficiently strict permissions is configured. Replacing a file with a symlink after the file was created, but before it was chowned, leads to the target of the link being chowned via the path. Targeting sensitive files such as roots crontab file allows privilege escalation.

Weakness

The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.

Affected Software

Name Vendor Start Version End Version
Passenger Phusion 3.0.0 (including) 5.3.2 (excluding)
Passenger Ubuntu artful *
Passenger Ubuntu bionic *
Passenger Ubuntu cosmic *
Passenger Ubuntu disco *
Passenger Ubuntu esm-apps/bionic *
Passenger Ubuntu esm-apps/xenial *
Passenger Ubuntu upstream *
Passenger Ubuntu xenial *
Ruby-passenger Ubuntu trusty *

Extended Description

A race condition occurs within concurrent environments, and it is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc. A race condition violates these properties, which are closely related:

A race condition exists when an “interfering code sequence” can still access the shared resource, violating exclusivity. The interfering code sequence could be “trusted” or “untrusted.” A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product.

Potential Mitigations

  • Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
  • Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).

References