The fallback function of a simple lottery smart contract implementation for Lucky9io, an Ethereum gambling game, generates a random value with the publicly readable variable entry_number. This variable is private, yet it is readable by eth.getStorageAt function. Also, attackers can purchase a ticket at a low price by directly calling the fallback function with small msg.value, because the developer set the currency unit incorrectly. Therefore, it allows attackers to always win and get rewards.
The product uses a Pseudo-Random Number Generator (PRNG) in a security context, but the PRNG’s algorithm is not cryptographically strong.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Lucky9io | Lucky9 | - (including) | - (including) |
When a non-cryptographic PRNG is used in a cryptographic context, it can expose the cryptography to certain types of attacks. Often a pseudo-random number generator (PRNG) is not designed for cryptography. Sometimes a mediocre source of randomness is sufficient or preferable for algorithms that use random numbers. Weak generators generally take less processing power and/or do not use the precious, finite, entropy sources on a system. While such PRNGs might have very useful features, these same features could be used to break the cryptography.