An issue was discovered in the Texas Instruments (TI) TM4C, MSP432E and MSP432P microcontroller series. The eXecute-Only-Memory (XOM) implementation prevents code read-outs on protected memory by generating bus faults. However, single-stepping and using breakpoints is allowed in XOM-protected flash memory. As a consequence, it is possible to execute single instructions with arbitrary system states (e.g., registers, status flags, and SRAM content) and observe the state changes produced by the unknown instruction. An attacker could exploit this vulnerability by executing protected and unknown instructions with specific system states and observing the state changes. Based on the gathered information, it is possible to reverse-engineer the executed instructions. The processor acts as a kind of instruction oracle.
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Name | Vendor | Start Version | End Version |
---|---|---|---|
Tm4c123_firmware | Ti | - (including) | - (including) |
There are many different kinds of mistakes that introduce information exposures. The severity of the error can range widely, depending on the context in which the product operates, the type of sensitive information that is revealed, and the benefits it may provide to an attacker. Some kinds of sensitive information include:
Information might be sensitive to different parties, each of which may have their own expectations for whether the information should be protected. These parties include:
Information exposures can occur in different ways:
It is common practice to describe any loss of confidentiality as an “information exposure,” but this can lead to overuse of CWE-200 in CWE mapping. From the CWE perspective, loss of confidentiality is a technical impact that can arise from dozens of different weaknesses, such as insecure file permissions or out-of-bounds read. CWE-200 and its lower-level descendants are intended to cover the mistakes that occur in behaviors that explicitly manage, store, transfer, or cleanse sensitive information.