CVE Vulnerabilities

CVE-2018-5871

Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

Published: Sep 20, 2018 | Modified: Oct 03, 2019
CVSS 3.x
6.5
MEDIUM
Source:
NVD
CVSS:3.0/AV:A/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N
CVSS 2.x
3.3 LOW
AV:A/AC:L/Au:N/C:N/I:P/A:N
RedHat/V2
RedHat/V3
Ubuntu

In Snapdragon (Automobile, Mobile, Wear) in version MDM9206, MDM9607, MDM9640, MDM9650, MSM8996AU, QCA6574AU, SD 210/SD 212/SD 205, SD 425, SD 427, SD 430, SD 435, SD 450, SD 615/16/SD 415, SD 625, SD 650/52, SD 820A, SD 835, SD 845, SD 850, SDA660, SDM429, SDM439, SDM630, SDM632, SDM636, SDM660, SDM710, Snapdragon_High_Med_2016, MAC address randomization performed during probe requests (for privacy reasons) is not done properly due to a flawed RNG which produces repeating output much earlier than expected.

Weakness

The product uses a Pseudo-Random Number Generator (PRNG) in a security context, but the PRNG’s algorithm is not cryptographically strong.

Affected Software

Name Vendor Start Version End Version
Mdm9206_firmware Qualcomm - (including) - (including)

Extended Description

When a non-cryptographic PRNG is used in a cryptographic context, it can expose the cryptography to certain types of attacks. Often a pseudo-random number generator (PRNG) is not designed for cryptography. Sometimes a mediocre source of randomness is sufficient or preferable for algorithms that use random numbers. Weak generators generally take less processing power and/or do not use the precious, finite, entropy sources on a system. While such PRNGs might have very useful features, these same features could be used to break the cryptography.

Potential Mitigations

References