CVE Vulnerabilities

CVE-2019-10224

Exposure of Sensitive Information to an Unauthorized Actor

Published: Nov 25, 2019 | Modified: Apr 24, 2023
CVSS 3.x
4.6
MEDIUM
Source:
NVD
CVSS:3.1/AV:P/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N
CVSS 2.x
2.1 LOW
AV:L/AC:L/Au:N/C:P/I:N/A:N
RedHat/V2
RedHat/V3
4.3 LOW
CVSS:3.0/AV:P/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N
Ubuntu
LOW

A flaw has been found in 389-ds-base versions 1.4.x.x before 1.4.1.3. When executed in verbose mode, the dscreate and dsconf commands may display sensitive information, such as the Directory Manager password. An attacker, able to see the screen or record the terminal standard error output, could use this flaw to gain sensitive information.

Weakness

The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.

Affected Software

Name Vendor Start Version End Version
389_directory_server Fedoraproject 1.4.0.0 (including) 1.4.1.3 (excluding)
Red Hat Enterprise Linux 8 RedHat 389-ds:1.4-8010020190903200205.eb48df33 *
389-ds-base Ubuntu bionic *
389-ds-base Ubuntu disco *
389-ds-base Ubuntu esm-apps/bionic *
389-ds-base Ubuntu esm-apps/xenial *
389-ds-base Ubuntu trusty *
389-ds-base Ubuntu upstream *
389-ds-base Ubuntu xenial *
Python-lib389 Ubuntu trusty *

Extended Description

There are many different kinds of mistakes that introduce information exposures. The severity of the error can range widely, depending on the context in which the product operates, the type of sensitive information that is revealed, and the benefits it may provide to an attacker. Some kinds of sensitive information include:

Information might be sensitive to different parties, each of which may have their own expectations for whether the information should be protected. These parties include:

Information exposures can occur in different ways:

It is common practice to describe any loss of confidentiality as an “information exposure,” but this can lead to overuse of CWE-200 in CWE mapping. From the CWE perspective, loss of confidentiality is a technical impact that can arise from dozens of different weaknesses, such as insecure file permissions or out-of-bounds read. CWE-200 and its lower-level descendants are intended to cover the mistakes that occur in behaviors that explicitly manage, store, transfer, or cleanse sensitive information.

Potential Mitigations

  • Compartmentalize the system to have “safe” areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
  • Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

References