CVE Vulnerabilities

CVE-2019-11683

Out-of-bounds Write

Published: May 02, 2019 | Modified: Nov 07, 2023
CVSS 3.x
9.8
CRITICAL
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
10 HIGH
AV:N/AC:L/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
7.5 MODERATE
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Ubuntu
MEDIUM

udp_gro_receive_segment in net/ipv4/udp_offload.c in the Linux kernel 5.x before 5.0.13 allows remote attackers to cause a denial of service (slab-out-of-bounds memory corruption) or possibly have unspecified other impact via UDP packets with a 0 payload, because of mishandling of padded packets, aka the GRO packet of death issue.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Linux_kernel Linux 5.0 (including) 5.0.13 (excluding)
Linux Ubuntu disco *
Linux Ubuntu esm-infra-legacy/trusty *
Linux Ubuntu precise/esm *
Linux Ubuntu trusty/esm *
Linux-aws Ubuntu disco *
Linux-aws Ubuntu upstream *
Linux-aws-hwe Ubuntu upstream *
Linux-azure Ubuntu disco *
Linux-azure Ubuntu upstream *
Linux-azure-edge Ubuntu upstream *
Linux-euclid Ubuntu esm-apps/xenial *
Linux-euclid Ubuntu upstream *
Linux-euclid Ubuntu xenial *
Linux-flo Ubuntu esm-apps/xenial *
Linux-flo Ubuntu upstream *
Linux-flo Ubuntu xenial *
Linux-gcp Ubuntu disco *
Linux-gcp Ubuntu upstream *
Linux-gcp-edge Ubuntu upstream *
Linux-gke Ubuntu upstream *
Linux-gke Ubuntu xenial *
Linux-gke-4.15 Ubuntu upstream *
Linux-gke-5.0 Ubuntu upstream *
Linux-goldfish Ubuntu esm-apps/xenial *
Linux-goldfish Ubuntu upstream *
Linux-goldfish Ubuntu xenial *
Linux-grouper Ubuntu upstream *
Linux-hwe Ubuntu upstream *
Linux-hwe-edge Ubuntu upstream *
Linux-kvm Ubuntu disco *
Linux-kvm Ubuntu upstream *
Linux-lts-trusty Ubuntu precise/esm *
Linux-lts-trusty Ubuntu upstream *
Linux-lts-utopic Ubuntu upstream *
Linux-lts-vivid Ubuntu upstream *
Linux-lts-wily Ubuntu upstream *
Linux-lts-xenial Ubuntu esm-infra-legacy/trusty *
Linux-lts-xenial Ubuntu trusty/esm *
Linux-lts-xenial Ubuntu upstream *
Linux-maguro Ubuntu upstream *
Linux-mako Ubuntu esm-apps/xenial *
Linux-mako Ubuntu upstream *
Linux-mako Ubuntu xenial *
Linux-manta Ubuntu upstream *
Linux-oem Ubuntu upstream *
Linux-oem Ubuntu xenial *
Linux-oracle Ubuntu upstream *
Linux-raspi2 Ubuntu disco *
Linux-raspi2 Ubuntu upstream *
Linux-snapdragon Ubuntu disco *
Linux-snapdragon Ubuntu upstream *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References