CVE Vulnerabilities

CVE-2019-1347

Out-of-bounds Read

Published: Oct 10, 2019 | Modified: Aug 24, 2020
CVSS 3.x
6.5
MEDIUM
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H
CVSS 2.x
7.1 HIGH
AV:N/AC:M/Au:N/C:N/I:N/A:C
RedHat/V2
RedHat/V3
Ubuntu

A denial of service vulnerability exists when Windows improperly handles objects in memory, aka Windows Denial of Service Vulnerability. This CVE ID is unique from CVE-2019-1343, CVE-2019-1346.

Weakness

The product reads data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Windows_server_2012 Microsoft r2 r2
Windows_10 Microsoft 1607 1607
Windows_8.1 Microsoft - -
Windows_server_2016 Microsoft - -
Windows_rt_8.1 Microsoft - -
Windows_10 Microsoft 1703 1703
Windows_10 Microsoft - -
Windows_10 Microsoft 1709 1709
Windows_10 Microsoft 1803 1803
Windows_server_2016 Microsoft 1803 1803
Windows_server_2019 Microsoft - -
Windows_10 Microsoft 1809 1809
Windows_server_2016 Microsoft 1903 1903
Windows_10 Microsoft 1903 1903

Potential Mitigations

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”
  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
  • To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.

References