CVE Vulnerabilities

CVE-2019-17666

Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

Published: Oct 17, 2019 | Modified: Nov 07, 2023
CVSS 3.x
8.8
HIGH
Source:
NVD
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
8.3 HIGH
AV:A/AC:L/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
6.3 IMPORTANT
CVSS:3.0/AV:A/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:H
Ubuntu
MEDIUM

rtl_p2p_noa_ie in drivers/net/wireless/realtek/rtlwifi/ps.c in the Linux kernel through 5.3.6 lacks a certain upper-bound check, leading to a buffer overflow.

Weakness

The product copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow.

Affected Software

Name Vendor Start Version End Version
Linux_kernel Linux * 3.16.77 (excluding)
Linux_kernel Linux 3.17 (including) 4.4.199 (excluding)
Linux_kernel Linux 4.5 (including) 4.9.199 (excluding)
Linux_kernel Linux 4.10 (including) 4.14.152 (excluding)
Linux_kernel Linux 4.15 (including) 4.19.82 (excluding)
Linux_kernel Linux 4.20 (including) 5.2 (excluding)
Linux_kernel Linux 5.3 (including) 5.3.9 (excluding)
Red Hat Enterprise Linux 6 RedHat kernel-0:2.6.32-754.29.1.el6 *
Red Hat Enterprise Linux 7 RedHat kernel-rt-0:3.10.0-1062.18.1.rt56.1044.el7 *
Red Hat Enterprise Linux 7 RedHat kernel-alt-0:4.14.0-115.18.1.el7a *
Red Hat Enterprise Linux 7 RedHat kernel-0:3.10.0-1062.18.1.el7 *
Red Hat Enterprise Linux 7.2 Advanced Update Support RedHat kernel-0:3.10.0-327.85.1.el7 *
Red Hat Enterprise Linux 7.3 Advanced Update Support RedHat kernel-0:3.10.0-514.74.1.el7 *
Red Hat Enterprise Linux 7.3 Telco Extended Update Support RedHat kernel-0:3.10.0-514.74.1.el7 *
Red Hat Enterprise Linux 7.3 Update Services for SAP Solutions RedHat kernel-0:3.10.0-514.74.1.el7 *
Red Hat Enterprise Linux 7.4 Advanced Update Support RedHat kernel-0:3.10.0-693.65.1.el7 *
Red Hat Enterprise Linux 7.4 Telco Extended Update Support RedHat kernel-0:3.10.0-693.65.1.el7 *
Red Hat Enterprise Linux 7.4 Update Services for SAP Solutions RedHat kernel-0:3.10.0-693.65.1.el7 *
Red Hat Enterprise Linux 7.5 Extended Update Support RedHat kernel-0:3.10.0-862.48.1.el7 *
Red Hat Enterprise Linux 7.6 Extended Update Support RedHat kernel-0:3.10.0-957.48.1.el7 *
Red Hat Enterprise Linux 8 RedHat kernel-rt-0:4.18.0-147.5.1.rt24.98.el8_1 *
Red Hat Enterprise Linux 8 RedHat kernel-0:4.18.0-147.5.1.el8_1 *
Red Hat Enterprise Linux 8.0 Update Services for SAP Solutions RedHat kernel-0:4.18.0-80.16.1.el8_0 *
Red Hat Enterprise MRG 2 RedHat kernel-rt-1:3.10.0-693.65.1.rt56.663.el6rt *
Red Hat Virtualization 4.2 for Red Hat Enterprise Linux 7.6 EUS RedHat kernel-0:3.10.0-957.48.1.el7 *
Linux Ubuntu bionic *
Linux Ubuntu disco *
Linux Ubuntu eoan *
Linux Ubuntu esm-infra/bionic *
Linux Ubuntu esm-infra/xenial *
Linux Ubuntu trusty *
Linux Ubuntu trusty/esm *
Linux Ubuntu upstream *
Linux Ubuntu xenial *
Linux-aws Ubuntu bionic *
Linux-aws Ubuntu disco *
Linux-aws Ubuntu eoan *
Linux-aws Ubuntu esm-infra/bionic *
Linux-aws Ubuntu esm-infra/xenial *
Linux-aws Ubuntu trusty *
Linux-aws Ubuntu trusty/esm *
Linux-aws Ubuntu upstream *
Linux-aws Ubuntu xenial *
Linux-aws-5.0 Ubuntu upstream *
Linux-aws-5.3 Ubuntu upstream *
Linux-aws-hwe Ubuntu esm-infra/xenial *
Linux-aws-hwe Ubuntu upstream *
Linux-aws-hwe Ubuntu xenial *
Linux-azure Ubuntu bionic *
Linux-azure Ubuntu disco *
Linux-azure Ubuntu eoan *
Linux-azure Ubuntu esm-infra/bionic *
Linux-azure Ubuntu esm-infra/xenial *
Linux-azure Ubuntu trusty *
Linux-azure Ubuntu trusty/esm *
Linux-azure Ubuntu upstream *
Linux-azure Ubuntu xenial *
Linux-azure-4.15 Ubuntu upstream *
Linux-azure-5.3 Ubuntu upstream *
Linux-azure-edge Ubuntu bionic *
Linux-azure-edge Ubuntu esm-infra/bionic *
Linux-azure-edge Ubuntu upstream *
Linux-gcp Ubuntu bionic *
Linux-gcp Ubuntu disco *
Linux-gcp Ubuntu eoan *
Linux-gcp Ubuntu esm-infra/bionic *
Linux-gcp Ubuntu esm-infra/xenial *
Linux-gcp Ubuntu upstream *
Linux-gcp Ubuntu xenial *
Linux-gcp-4.15 Ubuntu upstream *
Linux-gcp-5.3 Ubuntu upstream *
Linux-gcp-edge Ubuntu bionic *
Linux-gcp-edge Ubuntu esm-infra/bionic *
Linux-gcp-edge Ubuntu upstream *
Linux-gke-4.15 Ubuntu bionic *
Linux-gke-4.15 Ubuntu esm-infra/bionic *
Linux-gke-4.15 Ubuntu upstream *
Linux-gke-5.0 Ubuntu bionic *
Linux-gke-5.0 Ubuntu upstream *
Linux-gke-5.3 Ubuntu upstream *
Linux-hwe Ubuntu bionic *
Linux-hwe Ubuntu esm-infra/bionic *
Linux-hwe Ubuntu esm-infra/xenial *
Linux-hwe Ubuntu upstream *
Linux-hwe Ubuntu xenial *
Linux-hwe-edge Ubuntu bionic *
Linux-hwe-edge Ubuntu esm-infra/bionic *
Linux-hwe-edge Ubuntu esm-infra/xenial *
Linux-hwe-edge Ubuntu upstream *
Linux-hwe-edge Ubuntu xenial *
Linux-kvm Ubuntu bionic *
Linux-kvm Ubuntu disco *
Linux-kvm Ubuntu eoan *
Linux-kvm Ubuntu esm-infra/bionic *
Linux-kvm Ubuntu esm-infra/xenial *
Linux-kvm Ubuntu upstream *
Linux-kvm Ubuntu xenial *
Linux-lts-trusty Ubuntu precise/esm *
Linux-lts-trusty Ubuntu upstream *
Linux-lts-xenial Ubuntu trusty *
Linux-lts-xenial Ubuntu trusty/esm *
Linux-lts-xenial Ubuntu upstream *
Linux-oem Ubuntu bionic *
Linux-oem Ubuntu disco *
Linux-oem Ubuntu eoan *
Linux-oem Ubuntu esm-infra/bionic *
Linux-oem Ubuntu upstream *
Linux-oem Ubuntu xenial *
Linux-oem-5.6 Ubuntu upstream *
Linux-oem-osp1 Ubuntu bionic *
Linux-oem-osp1 Ubuntu disco *
Linux-oem-osp1 Ubuntu eoan *
Linux-oem-osp1 Ubuntu upstream *
Linux-oracle Ubuntu bionic *
Linux-oracle Ubuntu disco *
Linux-oracle Ubuntu eoan *
Linux-oracle Ubuntu esm-infra/bionic *
Linux-oracle Ubuntu esm-infra/xenial *
Linux-oracle Ubuntu upstream *
Linux-oracle Ubuntu xenial *
Linux-oracle-5.0 Ubuntu upstream *
Linux-oracle-5.3 Ubuntu upstream *
Linux-raspi Ubuntu upstream *
Linux-raspi2 Ubuntu bionic *
Linux-raspi2 Ubuntu disco *
Linux-raspi2 Ubuntu eoan *
Linux-raspi2 Ubuntu focal *
Linux-raspi2 Ubuntu upstream *
Linux-raspi2 Ubuntu xenial *
Linux-raspi2-5.3 Ubuntu upstream *
Linux-riscv Ubuntu upstream *
Linux-snapdragon Ubuntu bionic *
Linux-snapdragon Ubuntu disco *
Linux-snapdragon Ubuntu upstream *
Linux-snapdragon Ubuntu xenial *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”

  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

  • Run the code in a “jail” or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.

  • OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations.

  • This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.

  • Be careful to avoid CWE-243 and other weaknesses related to jails.

References