CVE Vulnerabilities

CVE-2019-19580

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

Published: Dec 11, 2019 | Modified: Nov 07, 2023
CVSS 3.x
6.6
MEDIUM
Source:
NVD
CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
6 MEDIUM
AV:N/AC:M/Au:S/C:P/I:P/A:P
RedHat/V2
RedHat/V3
7.6 MODERATE
CVSS:3.1/AV:A/AC:H/PR:H/UI:N/S:C/C:H/I:H/A:H
Ubuntu
MEDIUM

An issue was discovered in Xen through 4.12.x allowing x86 PV guest OS users to gain host OS privileges by leveraging race conditions in pagetable promotion and demotion operations, because of an incomplete fix for CVE-2019-18421. XSA-299 addressed several critical issues in restartable PV type change operations. Despite extensive testing and auditing, some corner cases were missed. A malicious PV guest administrator may be able to escalate their privilege to that of the host. All security-supported versions of Xen are vulnerable. Only x86 systems are affected. Arm systems are not affected. Only x86 PV guests can leverage the vulnerability. x86 HVM and PVH guests cannot leverage the vulnerability. Note that these attacks require very precise timing, which may be difficult to exploit in practice.

Weakness

The product contains a code sequence that can run concurrently with other code, and the code sequence requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence that is operating concurrently.

Affected Software

Name Vendor Start Version End Version
Xen Xen * 4.12.1 (including)
Xen Ubuntu bionic *
Xen Ubuntu disco *
Xen Ubuntu eoan *
Xen Ubuntu esm-infra/bionic *
Xen Ubuntu esm-infra/xenial *
Xen Ubuntu trusty *
Xen Ubuntu xenial *

Extended Description

This can have security implications when the expected synchronization is in security-critical code, such as recording whether a user is authenticated or modifying important state information that should not be influenced by an outsider. A race condition occurs within concurrent environments, and is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc. A race condition violates these properties, which are closely related:

A race condition exists when an “interfering code sequence” can still access the shared resource, violating exclusivity. Programmers may assume that certain code sequences execute too quickly to be affected by an interfering code sequence; when they are not, this violates atomicity. For example, the single “x++” statement may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read (the original value of x), followed by a computation (x+1), followed by a write (save the result to x). The interfering code sequence could be “trusted” or “untrusted.” A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product.

Potential Mitigations

  • Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
  • Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).

References