CVE Vulnerabilities

CVE-2019-20006

Use After Free

Published: Dec 26, 2019 | Modified: Jan 02, 2020
CVSS 3.x
7.5
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS 2.x
5 MEDIUM
AV:N/AC:L/Au:N/C:N/I:N/A:P
RedHat/V2
RedHat/V3
Ubuntu
MEDIUM

An issue was discovered in ezXML 0.8.3 through 0.8.6. The function ezxml_char_content puts a pointer to the internal address of a larger block as xml->txt. This is later deallocated (using free), leading to a segmentation fault.

Weakness

Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code.

Affected Software

Name Vendor Start Version End Version
Ezxml Ezxml_project 0.8.3 (including) 0.8.6 (including)
Mapcache Ubuntu bionic *
Mapcache Ubuntu groovy *
Mapcache Ubuntu hirsute *
Mapcache Ubuntu impish *
Mapcache Ubuntu kinetic *
Mapcache Ubuntu lunar *
Mapcache Ubuntu mantic *
Mapcache Ubuntu trusty *
Mapcache Ubuntu xenial *
Netcdf Ubuntu bionic *
Netcdf Ubuntu groovy *
Netcdf Ubuntu hirsute *
Netcdf Ubuntu impish *
Netcdf Ubuntu kinetic *
Netcdf Ubuntu lunar *
Netcdf Ubuntu mantic *
Netcdf Ubuntu trusty *
Netcdf Ubuntu trusty/esm *
Netcdf Ubuntu xenial *
Netcdf-parallel Ubuntu groovy *
Netcdf-parallel Ubuntu hirsute *
Netcdf-parallel Ubuntu impish *
Netcdf-parallel Ubuntu kinetic *
Netcdf-parallel Ubuntu lunar *
Netcdf-parallel Ubuntu mantic *
Netcdf-parallel Ubuntu trusty *
Netcdf-parallel Ubuntu xenial *
Scilab Ubuntu bionic *
Scilab Ubuntu groovy *
Scilab Ubuntu hirsute *
Scilab Ubuntu impish *
Scilab Ubuntu kinetic *
Scilab Ubuntu lunar *
Scilab Ubuntu mantic *
Scilab Ubuntu trusty *
Scilab Ubuntu xenial *

Extended Description

The use of previously-freed memory can have any number of adverse consequences, ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and timing of the flaw. The simplest way data corruption may occur involves the system’s reuse of the freed memory. Use-after-free errors have two common and sometimes overlapping causes:

In this scenario, the memory in question is allocated to another pointer validly at some point after it has been freed. The original pointer to the freed memory is used again and points to somewhere within the new allocation. As the data is changed, it corrupts the validly used memory; this induces undefined behavior in the process. If the newly allocated data happens to hold a class, in C++ for example, various function pointers may be scattered within the heap data. If one of these function pointers is overwritten with an address to valid shellcode, execution of arbitrary code can be achieved.

Potential Mitigations

References