CVE Vulnerabilities

CVE-2019-3701

Out-of-bounds Write

Published: Jan 03, 2019 | Modified: Nov 21, 2024
CVSS 3.x
4.4
MEDIUM
Source:
NVD
CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H
CVSS 2.x
4.9 MEDIUM
AV:L/AC:L/Au:N/C:N/I:N/A:C
RedHat/V2
RedHat/V3
4.4 N/A
CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H
Ubuntu
NEGLIGIBLE
root.io logo minimus.io logo echo.ai logo

An issue was discovered in can_can_gw_rcv in net/can/gw.c in the Linux kernel through 4.19.13. The CAN frame modification rules allow bitwise logical operations that can be also applied to the can_dlc field. The privileged user root with CAP_NET_ADMIN can create a CAN frame modification rule that makes the data length code a higher value than the available CAN frame data size. In combination with a configured checksum calculation where the result is stored relatively to the end of the data (e.g. cgw_csum_xor_rel) the tail of the skb (e.g. frag_list pointer in skb_shared_info) can be rewritten which finally can cause a system crash. Because of a missing check, the CAN drivers may write arbitrary content beyond the data registers in the CAN controllers I/O memory when processing can-gw manipulated outgoing frames.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

NameVendorStart VersionEnd Version
Linux_kernelLinux*4.19.13 (including)
LinuxUbuntubionic*
LinuxUbuntucosmic*
LinuxUbuntuesm-infra-legacy/trusty*
LinuxUbuntuesm-infra/bionic*
LinuxUbuntuesm-infra/xenial*
LinuxUbuntuprecise/esm*
LinuxUbuntutrusty*
LinuxUbuntutrusty/esm*
LinuxUbuntuupstream*
LinuxUbuntuxenial*
Linux-awsUbuntubionic*
Linux-awsUbuntucosmic*
Linux-awsUbuntuesm-infra-legacy/trusty*
Linux-awsUbuntuesm-infra/bionic*
Linux-awsUbuntuesm-infra/xenial*
Linux-awsUbuntutrusty*
Linux-awsUbuntutrusty/esm*
Linux-awsUbuntuupstream*
Linux-awsUbuntuxenial*
Linux-aws-5.0Ubuntuupstream*
Linux-aws-5.15Ubuntuupstream*
Linux-aws-5.4Ubuntuupstream*
Linux-aws-6.14Ubuntuupstream*
Linux-aws-6.8Ubuntuupstream*
Linux-aws-fipsUbuntufips-updates/bionic*
Linux-aws-fipsUbuntufips/bionic*
Linux-aws-fipsUbuntutrusty*
Linux-aws-fipsUbuntuupstream*
Linux-aws-fipsUbuntuxenial*
Linux-aws-hweUbuntuesm-infra/xenial*
Linux-aws-hweUbuntuupstream*
Linux-aws-hweUbuntuxenial*
Linux-azureUbuntubionic*
Linux-azureUbuntucosmic*
Linux-azureUbuntuesm-infra-legacy/trusty*
Linux-azureUbuntuesm-infra/bionic*
Linux-azureUbuntuesm-infra/xenial*
Linux-azureUbuntutrusty*
Linux-azureUbuntutrusty/esm*
Linux-azureUbuntuupstream*
Linux-azureUbuntuxenial*
Linux-azure-4.15Ubuntuupstream*
Linux-azure-5.15Ubuntuupstream*
Linux-azure-5.3Ubuntuupstream*
Linux-azure-5.4Ubuntuupstream*
Linux-azure-6.11Ubuntuupstream*
Linux-azure-6.14Ubuntuupstream*
Linux-azure-6.8Ubuntuupstream*
Linux-azure-edgeUbuntubionic*
Linux-azure-edgeUbuntuesm-infra/bionic*
Linux-azure-edgeUbuntuupstream*
Linux-azure-fdeUbuntuesm-infra/focal*
Linux-azure-fdeUbuntufocal*
Linux-azure-fdeUbuntuupstream*
Linux-azure-fde-5.15Ubuntuupstream*
Linux-azure-fde-6.14Ubuntuupstream*
Linux-azure-fde-6.8Ubuntuupstream*
Linux-azure-fipsUbuntufips-updates/bionic*
Linux-azure-fipsUbuntufips/bionic*
Linux-azure-fipsUbuntutrusty*
Linux-azure-fipsUbuntuupstream*
Linux-azure-fipsUbuntuxenial*
Linux-azure-nvidiaUbuntuupstream*
Linux-azure-nvidia-6.14Ubuntuupstream*
Linux-bluefieldUbuntuupstream*
Linux-euclidUbuntuupstream*
Linux-euclidUbuntuxenial*
Linux-fipsUbuntufips-updates/xenial*
Linux-fipsUbuntufips/bionic*
Linux-fipsUbuntufips/xenial*
Linux-fipsUbuntuupstream*
Linux-floUbuntutrusty*
Linux-floUbuntuupstream*
Linux-floUbuntuxenial*
Linux-gcpUbuntubionic*
Linux-gcpUbuntucosmic*
Linux-gcpUbuntuesm-infra/bionic*
Linux-gcpUbuntuesm-infra/xenial*
Linux-gcpUbuntuupstream*
Linux-gcpUbuntuxenial*
Linux-gcp-4.15Ubuntuupstream*
Linux-gcp-5.15Ubuntuupstream*
Linux-gcp-5.3Ubuntuupstream*
Linux-gcp-5.4Ubuntuupstream*
Linux-gcp-6.11Ubuntuupstream*
Linux-gcp-6.14Ubuntuupstream*
Linux-gcp-6.8Ubuntuupstream*
Linux-gcp-edgeUbuntubionic*
Linux-gcp-edgeUbuntuesm-infra/bionic*
Linux-gcp-edgeUbuntuupstream*
Linux-gcp-fipsUbuntufips/bionic*
Linux-gcp-fipsUbuntutrusty*
Linux-gcp-fipsUbuntuupstream*
Linux-gcp-fipsUbuntuxenial*
Linux-gkeUbuntuesm-infra/focal*
Linux-gkeUbuntufocal*
Linux-gkeUbuntuupstream*
Linux-gkeUbuntuxenial*
Linux-gke-4.15Ubuntubionic*
Linux-gke-4.15Ubuntuesm-infra/bionic*
Linux-gke-4.15Ubuntuupstream*
Linux-gke-5.0Ubuntuupstream*
Linux-gkeopUbuntuupstream*
Linux-gkeop-5.15Ubuntuupstream*
Linux-goldfishUbuntutrusty*
Linux-goldfishUbuntuupstream*
Linux-goldfishUbuntuxenial*
Linux-grouperUbuntutrusty*
Linux-grouperUbuntuupstream*
Linux-hweUbuntubionic*
Linux-hweUbuntuesm-infra/bionic*
Linux-hweUbuntuesm-infra/xenial*
Linux-hweUbuntuupstream*
Linux-hweUbuntuxenial*
Linux-hwe-5.15Ubuntuupstream*
Linux-hwe-5.4Ubuntuupstream*
Linux-hwe-6.11Ubuntuupstream*
Linux-hwe-6.14Ubuntuupstream*
Linux-hwe-6.8Ubuntuupstream*
Linux-hwe-edgeUbuntuesm-infra/xenial*
Linux-hwe-edgeUbuntuupstream*
Linux-hwe-edgeUbuntuxenial*
Linux-ibmUbuntuupstream*
Linux-ibm-5.15Ubuntuupstream*
Linux-ibm-5.4Ubuntuupstream*
Linux-ibm-6.8Ubuntuupstream*
Linux-intelUbuntuupstream*
Linux-intel-iot-realtimeUbuntujammy*
Linux-intel-iot-realtimeUbuntuupstream*
Linux-intel-iotgUbuntuupstream*
Linux-intel-iotg-5.15Ubuntuupstream*
Linux-iotUbuntuupstream*
Linux-kvmUbuntubionic*
Linux-kvmUbuntucosmic*
Linux-kvmUbuntuesm-infra/bionic*
Linux-kvmUbuntuesm-infra/xenial*
Linux-kvmUbuntuupstream*
Linux-kvmUbuntuxenial*
Linux-lowlatencyUbuntuupstream*
Linux-lowlatency-hwe-5.15Ubuntuupstream*
Linux-lowlatency-hwe-6.11Ubuntuupstream*
Linux-lowlatency-hwe-6.8Ubuntuupstream*
Linux-lts-trustyUbuntuprecise/esm*
Linux-lts-trustyUbuntuupstream*
Linux-lts-utopicUbuntutrusty*
Linux-lts-utopicUbuntutrusty/esm*
Linux-lts-utopicUbuntuupstream*
Linux-lts-vividUbuntutrusty*
Linux-lts-vividUbuntutrusty/esm*
Linux-lts-vividUbuntuupstream*
Linux-lts-wilyUbuntutrusty*
Linux-lts-wilyUbuntutrusty/esm*
Linux-lts-wilyUbuntuupstream*
Linux-lts-xenialUbuntuesm-infra-legacy/trusty*
Linux-lts-xenialUbuntutrusty*
Linux-lts-xenialUbuntutrusty/esm*
Linux-lts-xenialUbuntuupstream*
Linux-maguroUbuntutrusty*
Linux-maguroUbuntuupstream*
Linux-makoUbuntutrusty*
Linux-makoUbuntuupstream*
Linux-makoUbuntuxenial*
Linux-mantaUbuntutrusty*
Linux-mantaUbuntuupstream*
Linux-nvidiaUbuntuupstream*
Linux-nvidia-6.11Ubuntuupstream*
Linux-nvidia-6.5Ubuntuupstream*
Linux-nvidia-6.8Ubuntuupstream*
Linux-nvidia-lowlatencyUbuntuupstream*
Linux-nvidia-tegraUbuntuupstream*
Linux-nvidia-tegra-5.15Ubuntuupstream*
Linux-nvidia-tegra-igxUbuntuupstream*
Linux-oemUbuntubionic*
Linux-oemUbuntucosmic*
Linux-oemUbuntudisco*
Linux-oemUbuntueoan*
Linux-oemUbuntuesm-infra/bionic*
Linux-oemUbuntuupstream*
Linux-oemUbuntuxenial*
Linux-oem-6.11Ubuntuupstream*
Linux-oem-6.14Ubuntuupstream*
Linux-oem-6.17Ubuntuupstream*
Linux-oem-6.8Ubuntuupstream*
Linux-oem-osp1Ubuntuupstream*
Linux-oracleUbuntubionic*
Linux-oracleUbuntucosmic*
Linux-oracleUbuntudisco*
Linux-oracleUbuntuesm-infra/bionic*
Linux-oracleUbuntuesm-infra/xenial*
Linux-oracleUbuntuupstream*
Linux-oracleUbuntuxenial*
Linux-oracle-5.0Ubuntuupstream*
Linux-oracle-5.15Ubuntuupstream*
Linux-oracle-5.4Ubuntuupstream*
Linux-oracle-6.14Ubuntuupstream*
Linux-oracle-6.8Ubuntuupstream*
Linux-raspiUbuntuupstream*
Linux-raspi-5.4Ubuntuupstream*
Linux-raspi-realtimeUbuntunoble*
Linux-raspi-realtimeUbuntuupstream*
Linux-raspi2Ubuntubionic*
Linux-raspi2Ubuntucosmic*
Linux-raspi2Ubuntuupstream*
Linux-raspi2Ubuntuxenial*
Linux-raspi2-5.3Ubuntuupstream*
Linux-realtimeUbuntujammy*
Linux-realtimeUbuntuupstream*
Linux-realtime-6.14Ubuntuupstream*
Linux-realtime-6.8Ubuntuupstream*
Linux-riscvUbuntuesm-infra/focal*
Linux-riscvUbuntufocal*
Linux-riscvUbuntujammy*
Linux-riscvUbuntuupstream*
Linux-riscv-5.15Ubuntuupstream*
Linux-riscv-6.14Ubuntuupstream*
Linux-riscv-6.8Ubuntuupstream*
Linux-snapdragonUbuntubionic*
Linux-snapdragonUbuntuupstream*
Linux-snapdragonUbuntuxenial*
Linux-xilinxUbuntuupstream*
Linux-xilinx-zynqmpUbuntuupstream*

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References