CVE Vulnerabilities

CVE-2019-5060

Integer Overflow or Wraparound

Published: Jul 31, 2019 | Modified: Jun 27, 2022
CVSS 3.x
8.8
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
CVSS 2.x
6.8 MEDIUM
AV:N/AC:M/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
Ubuntu
MEDIUM

An exploitable code execution vulnerability exists in the XPM image rendering function of SDL2_image 2.0.4. A specially crafted XPM image can cause an integer overflow in the colorhash function, allocating too small of a buffer. This buffer can then be written out of bounds, resulting in a heap overflow, ultimately ending in code execution. An attacker can display a specially crafted image to trigger this vulnerability.

Weakness

The product performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control.

Affected Software

Name Vendor Start Version End Version
Sdl2_image Libsdl 2.0.4 (including) 2.0.4 (including)
Libsdl2-image Ubuntu bionic *
Libsdl2-image Ubuntu devel *
Libsdl2-image Ubuntu disco *
Libsdl2-image Ubuntu eoan *
Libsdl2-image Ubuntu esm-apps/bionic *
Libsdl2-image Ubuntu esm-apps/xenial *
Libsdl2-image Ubuntu focal *
Libsdl2-image Ubuntu groovy *
Libsdl2-image Ubuntu hirsute *
Libsdl2-image Ubuntu impish *
Libsdl2-image Ubuntu jammy *
Libsdl2-image Ubuntu kinetic *
Libsdl2-image Ubuntu lunar *
Libsdl2-image Ubuntu mantic *
Libsdl2-image Ubuntu noble *
Libsdl2-image Ubuntu oracular *
Libsdl2-image Ubuntu trusty *
Libsdl2-image Ubuntu trusty/esm *
Libsdl2-image Ubuntu upstream *
Libsdl2-image Ubuntu xenial *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • If possible, choose a language or compiler that performs automatic bounds checking.
  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
  • Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
  • Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
  • Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
  • Understand the programming language’s underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, “not-a-number” calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
  • Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.

References