CVE Vulnerabilities

CVE-2019-9500

Heap-based Buffer Overflow

Published: Jan 16, 2020 | Modified: Nov 21, 2024
CVSS 3.x
8.3
HIGH
Source:
NVD
CVSS:3.1/AV:A/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H
CVSS 2.x
7.9 HIGH
AV:A/AC:M/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
6.5 IMPORTANT
CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:H
Ubuntu
MEDIUM
root.io logo minimus.io logo echo.ai logo

The Broadcom brcmfmac WiFi driver prior to commit 1b5e2423164b3670e8bc9174e4762d297990deff is vulnerable to a heap buffer overflow. If the Wake-up on Wireless LAN functionality is configured, a malicious event frame can be constructed to trigger an heap buffer overflow in the brcmf_wowl_nd_results function. This vulnerability can be exploited with compromised chipsets to compromise the host, or when used in combination with CVE-2019-9503, can be used remotely. In the worst case scenario, by sending specially-crafted WiFi packets, a remote, unauthenticated attacker may be able to execute arbitrary code on a vulnerable system. More typically, this vulnerability will result in denial-of-service conditions.

Weakness

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().

Affected Software

NameVendorStart VersionEnd Version
Brcmfmac_driverBroadcom- (including)- (including)
Red Hat Enterprise Linux 7RedHatkernel-rt-0:3.10.0-1062.1.1.rt56.1024.el7*
Red Hat Enterprise Linux 7RedHatkernel-0:3.10.0-1062.1.1.el7*
Red Hat Enterprise Linux 7RedHatkpatch-patch*
Red Hat Enterprise Linux 7RedHatkernel-alt-0:4.14.0-115.14.1.el7a*
Red Hat Enterprise Linux 7.6 Extended Update SupportRedHatkernel-0:3.10.0-957.41.1.el7*
Red Hat Enterprise Linux 7.6 Extended Update SupportRedHatkpatch-patch*
Red Hat Enterprise Linux 8RedHatkernel-rt-0:4.18.0-80.11.1.rt9.156.el8_0*
Red Hat Enterprise Linux 8RedHatkernel-0:4.18.0-80.11.1.el8_0*
Red Hat Virtualization 4.2 for Red Hat Enterprise Linux 7.6 EUSRedHatkernel-0:3.10.0-957.41.1.el7*
LinuxUbuntubionic*
LinuxUbuntucosmic*
LinuxUbuntudevel*
LinuxUbuntudisco*
LinuxUbuntuesm-infra/bionic*
LinuxUbuntuupstream*
Linux-awsUbuntubionic*
Linux-awsUbuntucosmic*
Linux-awsUbuntudevel*
Linux-awsUbuntudisco*
Linux-awsUbuntuesm-infra/bionic*
Linux-awsUbuntuupstream*
Linux-aws-hweUbuntuesm-infra/xenial*
Linux-aws-hweUbuntuupstream*
Linux-aws-hweUbuntuxenial*
Linux-azureUbuntubionic*
Linux-azureUbuntucosmic*
Linux-azureUbuntudevel*
Linux-azureUbuntudisco*
Linux-azureUbuntuesm-infra-legacy/trusty*
Linux-azureUbuntuesm-infra/bionic*
Linux-azureUbuntuesm-infra/xenial*
Linux-azureUbuntutrusty*
Linux-azureUbuntutrusty/esm*
Linux-azureUbuntuupstream*
Linux-azureUbuntuxenial*
Linux-azure-edgeUbuntubionic*
Linux-azure-edgeUbuntuesm-infra/bionic*
Linux-azure-edgeUbuntuupstream*
Linux-azure-edgeUbuntuxenial*
Linux-euclidUbuntuupstream*
Linux-floUbuntutrusty*
Linux-floUbuntuupstream*
Linux-floUbuntuxenial*
Linux-gcpUbuntubionic*
Linux-gcpUbuntucosmic*
Linux-gcpUbuntudevel*
Linux-gcpUbuntudisco*
Linux-gcpUbuntuesm-infra/bionic*
Linux-gcpUbuntuesm-infra/xenial*
Linux-gcpUbuntuupstream*
Linux-gcpUbuntuxenial*
Linux-gcp-edgeUbuntubionic*
Linux-gcp-edgeUbuntuesm-infra/bionic*
Linux-gcp-edgeUbuntuupstream*
Linux-gkeUbuntuupstream*
Linux-gkeUbuntuxenial*
Linux-gke-4.15Ubuntubionic*
Linux-gke-4.15Ubuntuesm-infra/bionic*
Linux-gke-4.15Ubuntuupstream*
Linux-gke-5.0Ubuntuupstream*
Linux-goldfishUbuntutrusty*
Linux-goldfishUbuntuupstream*
Linux-goldfishUbuntuxenial*
Linux-grouperUbuntutrusty*
Linux-grouperUbuntuupstream*
Linux-hweUbuntubionic*
Linux-hweUbuntuesm-infra/bionic*
Linux-hweUbuntuesm-infra/xenial*
Linux-hweUbuntuupstream*
Linux-hweUbuntuxenial*
Linux-hwe-edgeUbuntuesm-infra/xenial*
Linux-hwe-edgeUbuntuupstream*
Linux-hwe-edgeUbuntuxenial*
Linux-kvmUbuntubionic*
Linux-kvmUbuntucosmic*
Linux-kvmUbuntudevel*
Linux-kvmUbuntudisco*
Linux-kvmUbuntuesm-infra/bionic*
Linux-kvmUbuntuupstream*
Linux-lts-trustyUbuntuupstream*
Linux-lts-utopicUbuntutrusty*
Linux-lts-utopicUbuntutrusty/esm*
Linux-lts-utopicUbuntuupstream*
Linux-lts-vividUbuntutrusty*
Linux-lts-vividUbuntutrusty/esm*
Linux-lts-vividUbuntuupstream*
Linux-lts-wilyUbuntutrusty*
Linux-lts-wilyUbuntutrusty/esm*
Linux-lts-wilyUbuntuupstream*
Linux-lts-xenialUbuntuupstream*
Linux-maguroUbuntutrusty*
Linux-maguroUbuntuupstream*
Linux-makoUbuntutrusty*
Linux-makoUbuntuupstream*
Linux-makoUbuntuxenial*
Linux-mantaUbuntutrusty*
Linux-mantaUbuntuupstream*
Linux-oemUbuntubionic*
Linux-oemUbuntucosmic*
Linux-oemUbuntudevel*
Linux-oemUbuntudisco*
Linux-oemUbuntuesm-infra/bionic*
Linux-oemUbuntuupstream*
Linux-oemUbuntuxenial*
Linux-oracleUbuntubionic*
Linux-oracleUbuntucosmic*
Linux-oracleUbuntudevel*
Linux-oracleUbuntudisco*
Linux-oracleUbuntuesm-infra/bionic*
Linux-oracleUbuntuesm-infra/xenial*
Linux-oracleUbuntuupstream*
Linux-oracleUbuntuxenial*
Linux-raspi2Ubuntubionic*
Linux-raspi2Ubuntucosmic*
Linux-raspi2Ubuntudevel*
Linux-raspi2Ubuntudisco*
Linux-raspi2Ubuntuupstream*
Linux-snapdragonUbuntudevel*
Linux-snapdragonUbuntudisco*
Linux-snapdragonUbuntuupstream*

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References