CVE Vulnerabilities

CVE-2020-12659

Out-of-bounds Write

Published: May 05, 2020 | Modified: Feb 01, 2024
CVSS 3.x
6.7
MEDIUM
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
7.2 HIGH
AV:L/AC:L/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
6.7 MODERATE
CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H
Ubuntu
LOW

An issue was discovered in the Linux kernel before 5.6.7. xdp_umem_reg in net/xdp/xdp_umem.c has an out-of-bounds write (by a user with the CAP_NET_ADMIN capability) because of a lack of headroom validation.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Linux_kernel Linux 4.18 (including) 4.19.118 (excluding)
Linux_kernel Linux 4.20 (including) 5.4.35 (excluding)
Linux_kernel Linux 5.5 (including) 5.6.7 (excluding)
Red Hat Enterprise Linux 8 RedHat kernel-rt-0:4.18.0-240.rt7.54.el8 *
Red Hat Enterprise Linux 8 RedHat kernel-0:4.18.0-240.el8 *
Linux Ubuntu eoan *
Linux Ubuntu focal *
Linux Ubuntu trusty *
Linux Ubuntu upstream *
Linux-aws Ubuntu eoan *
Linux-aws Ubuntu focal *
Linux-aws Ubuntu trusty *
Linux-aws Ubuntu upstream *
Linux-aws-5.0 Ubuntu bionic *
Linux-aws-5.0 Ubuntu esm-infra/bionic *
Linux-aws-5.0 Ubuntu upstream *
Linux-aws-5.3 Ubuntu bionic *
Linux-aws-5.3 Ubuntu upstream *
Linux-aws-5.4 Ubuntu upstream *
Linux-aws-hwe Ubuntu upstream *
Linux-azure Ubuntu bionic *
Linux-azure Ubuntu eoan *
Linux-azure Ubuntu esm-infra/bionic *
Linux-azure Ubuntu focal *
Linux-azure Ubuntu trusty *
Linux-azure Ubuntu upstream *
Linux-azure-4.15 Ubuntu upstream *
Linux-azure-5.3 Ubuntu bionic *
Linux-azure-5.3 Ubuntu upstream *
Linux-azure-5.4 Ubuntu upstream *
Linux-azure-edge Ubuntu bionic *
Linux-azure-edge Ubuntu esm-infra/bionic *
Linux-azure-edge Ubuntu upstream *
Linux-gcp Ubuntu bionic *
Linux-gcp Ubuntu eoan *
Linux-gcp Ubuntu esm-infra/bionic *
Linux-gcp Ubuntu focal *
Linux-gcp Ubuntu upstream *
Linux-gcp-4.15 Ubuntu upstream *
Linux-gcp-5.3 Ubuntu bionic *
Linux-gcp-5.3 Ubuntu upstream *
Linux-gcp-5.4 Ubuntu upstream *
Linux-gcp-edge Ubuntu bionic *
Linux-gcp-edge Ubuntu esm-infra/bionic *
Linux-gcp-edge Ubuntu upstream *
Linux-gke-4.15 Ubuntu upstream *
Linux-gke-5.0 Ubuntu bionic *
Linux-gke-5.0 Ubuntu upstream *
Linux-gke-5.3 Ubuntu bionic *
Linux-gke-5.3 Ubuntu upstream *
Linux-hwe Ubuntu bionic *
Linux-hwe Ubuntu upstream *
Linux-hwe-5.4 Ubuntu upstream *
Linux-hwe-edge Ubuntu bionic *
Linux-hwe-edge Ubuntu esm-infra/bionic *
Linux-hwe-edge Ubuntu esm-infra/xenial *
Linux-hwe-edge Ubuntu upstream *
Linux-hwe-edge Ubuntu xenial *
Linux-kvm Ubuntu eoan *
Linux-kvm Ubuntu focal *
Linux-kvm Ubuntu upstream *
Linux-lts-trusty Ubuntu upstream *
Linux-lts-xenial Ubuntu trusty *
Linux-lts-xenial Ubuntu upstream *
Linux-oem Ubuntu upstream *
Linux-oem Ubuntu xenial *
Linux-oem-5.6 Ubuntu focal *
Linux-oem-5.6 Ubuntu upstream *
Linux-oem-osp1 Ubuntu bionic *
Linux-oem-osp1 Ubuntu eoan *
Linux-oem-osp1 Ubuntu upstream *
Linux-oracle Ubuntu eoan *
Linux-oracle Ubuntu focal *
Linux-oracle Ubuntu upstream *
Linux-oracle-5.0 Ubuntu bionic *
Linux-oracle-5.0 Ubuntu esm-infra/bionic *
Linux-oracle-5.0 Ubuntu upstream *
Linux-oracle-5.3 Ubuntu bionic *
Linux-oracle-5.3 Ubuntu upstream *
Linux-oracle-5.4 Ubuntu upstream *
Linux-raspi Ubuntu focal *
Linux-raspi Ubuntu upstream *
Linux-raspi-5.4 Ubuntu upstream *
Linux-raspi2 Ubuntu eoan *
Linux-raspi2 Ubuntu focal *
Linux-raspi2 Ubuntu upstream *
Linux-raspi2-5.3 Ubuntu bionic *
Linux-raspi2-5.3 Ubuntu upstream *
Linux-riscv Ubuntu focal *
Linux-riscv Ubuntu upstream *
Linux-snapdragon Ubuntu upstream *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References