CVE Vulnerabilities

CVE-2020-1281

Integer Overflow or Wraparound

Published: Jun 09, 2020 | Modified: Jul 21, 2021
CVSS 3.x
8.8
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
CVSS 2.x
6.8 MEDIUM
AV:N/AC:M/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
Ubuntu

A remote code execution vulnerability exists when Microsoft Windows OLE fails to properly validate user input, aka Windows OLE Remote Code Execution Vulnerability.

Weakness

The product performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control.

Affected Software

Name Vendor Start Version End Version
Windows_10 Microsoft - (including) - (including)
Windows_10 Microsoft 1607 (including) 1607 (including)
Windows_10 Microsoft 1709 (including) 1709 (including)
Windows_10 Microsoft 1803 (including) 1803 (including)
Windows_10 Microsoft 1809 (including) 1809 (including)
Windows_10 Microsoft 1903 (including) 1903 (including)
Windows_10 Microsoft 1909 (including) 1909 (including)
Windows_10 Microsoft 2004 (including) 2004 (including)
Windows_7 Microsoft –sp1 (including) –sp1 (including)
Windows_8.1 Microsoft - (including) - (including)
Windows_rt_8.1 Microsoft - (including) - (including)
Windows_server_2008 Microsoft –sp2 (including) –sp2 (including)
Windows_server_2008 Microsoft r2-sp1 (including) r2-sp1 (including)
Windows_server_2012 Microsoft - (including) - (including)
Windows_server_2012 Microsoft r2 (including) r2 (including)
Windows_server_2016 Microsoft - (including) - (including)
Windows_server_2016 Microsoft 1803 (including) 1803 (including)
Windows_server_2016 Microsoft 1903 (including) 1903 (including)
Windows_server_2016 Microsoft 1909 (including) 1909 (including)
Windows_server_2016 Microsoft 2004 (including) 2004 (including)
Windows_server_2019 Microsoft - (including) - (including)

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • If possible, choose a language or compiler that performs automatic bounds checking.
  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
  • Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
  • Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
  • Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
  • Understand the programming language’s underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, “not-a-number” calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
  • Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.

References