CVE Vulnerabilities

CVE-2020-13131

Out-of-bounds Read

Published: Jul 09, 2020 | Modified: Jul 16, 2020
CVSS 3.x
4.3
MEDIUM
Source:
NVD
CVSS:3.1/AV:P/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N
CVSS 2.x
1.9 LOW
AV:L/AC:M/Au:N/C:P/I:N/A:N
RedHat/V2
RedHat/V3
Ubuntu

An issue was discovered in Yubico libykpiv before 2.1.0. lib/util.c in this library (which is included in yubico-piv-tool) does not properly check embedded length fields during device communication. A malicious PIV token can misreport the returned length fields during RSA key generation. This will cause stack memory to be copied into heap allocated memory that gets returned to the caller. The leaked memory could include PINs, passwords, key material, and other sensitive information depending on the integration. During further processing by the caller, this information could leak across trust boundaries. Note that RSA key generation is triggered by the host and cannot directly be triggered by the token.

Weakness

The product reads data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Libykpiv Yubico * 2.1.0 (excluding)

Potential Mitigations

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”
  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
  • To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.

References