CVE Vulnerabilities

CVE-2020-1421

Access of Resource Using Incompatible Type ('Type Confusion')

Published: Jul 14, 2020 | Modified: Jul 23, 2020
CVSS 3.x
8.8
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
CVSS 2.x
9.3 HIGH
AV:N/AC:M/Au:N/C:C/I:C/A:C
RedHat/V2
RedHat/V3
Ubuntu

A remote code execution vulnerability exists in Microsoft Windows that could allow remote code execution if a .LNK file is processed.An attacker who successfully exploited this vulnerability could gain the same user rights as the local user, aka LNK Remote Code Execution Vulnerability.

Weakness

The product allocates or initializes a resource such as a pointer, object, or variable using one type, but it later accesses that resource using a type that is incompatible with the original type.

Affected Software

Name Vendor Start Version End Version
Windows_10 Microsoft - (including) - (including)
Windows_10 Microsoft 1607 (including) 1607 (including)
Windows_10 Microsoft 1709 (including) 1709 (including)
Windows_10 Microsoft 1803 (including) 1803 (including)
Windows_10 Microsoft 1809 (including) 1809 (including)
Windows_10 Microsoft 1903 (including) 1903 (including)
Windows_10 Microsoft 1909 (including) 1909 (including)
Windows_10 Microsoft 2004 (including) 2004 (including)
Windows_server_2016 Microsoft - (including) - (including)
Windows_server_2016 Microsoft 1903 (including) 1903 (including)
Windows_server_2016 Microsoft 1909 (including) 1909 (including)
Windows_server_2016 Microsoft 2004 (including) 2004 (including)
Windows_server_2019 Microsoft - (including) - (including)

Extended Description

When the product accesses the resource using an incompatible type, this could trigger logical errors because the resource does not have expected properties. In languages without memory safety, such as C and C++, type confusion can lead to out-of-bounds memory access. While this weakness is frequently associated with unions when parsing data with many different embedded object types in C, it can be present in any application that can interpret the same variable or memory location in multiple ways. This weakness is not unique to C and C++. For example, errors in PHP applications can be triggered by providing array parameters when scalars are expected, or vice versa. Languages such as Perl, which perform automatic conversion of a variable of one type when it is accessed as if it were another type, can also contain these issues.

References