CVE Vulnerabilities

CVE-2020-14363

Integer Overflow or Wraparound

Published: Sep 11, 2020 | Modified: Nov 07, 2023
CVSS 3.x
7.8
HIGH
Source:
NVD
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
4.6 MEDIUM
AV:L/AC:L/Au:N/C:P/I:P/A:P
RedHat/V2
RedHat/V3
7.8 IMPORTANT
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
Ubuntu
MEDIUM

An integer overflow vulnerability leading to a double-free was found in libX11. This flaw allows a local privileged attacker to cause an application compiled with libX11 to crash, or in some cases, result in arbitrary code execution. The highest threat from this flaw is to confidentiality, integrity as well as system availability.

Weakness

The product performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control.

Affected Software

Name Vendor Start Version End Version
Libx11 X.org * 1.6.12 (excluding)
Red Hat Enterprise Linux 6 RedHat libX11-0:1.6.4-4.el6_10 *
Red Hat Enterprise Linux 7 RedHat libX11-0:1.6.7-3.el7_9 *
Red Hat Enterprise Linux 8 RedHat egl-wayland-0:1.1.5-3.el8 *
Red Hat Enterprise Linux 8 RedHat libdrm-0:2.4.103-1.el8 *
Red Hat Enterprise Linux 8 RedHat libglvnd-1:1.3.2-1.el8 *
Red Hat Enterprise Linux 8 RedHat libinput-0:1.16.3-1.el8 *
Red Hat Enterprise Linux 8 RedHat libwacom-0:1.6-2.el8 *
Red Hat Enterprise Linux 8 RedHat libX11-0:1.6.8-4.el8 *
Red Hat Enterprise Linux 8 RedHat mesa-0:20.3.3-2.el8 *
Red Hat Enterprise Linux 8 RedHat xorg-x11-drivers-0:7.7-30.el8 *
Red Hat Enterprise Linux 8 RedHat xorg-x11-server-0:1.20.10-1.el8 *
Libx11 Ubuntu bionic *
Libx11 Ubuntu focal *
Libx11 Ubuntu trusty *
Libx11 Ubuntu trusty/esm *
Libx11 Ubuntu xenial *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • If possible, choose a language or compiler that performs automatic bounds checking.
  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
  • Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
  • Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
  • Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
  • Understand the programming language’s underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, “not-a-number” calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
  • Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.

References