CVE Vulnerabilities

CVE-2020-15211

Out-of-bounds Read

Published: Sep 25, 2020 | Modified: Sep 16, 2021
CVSS 3.x
4.8
MEDIUM
Source:
NVD
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N
CVSS 2.x
5.8 MEDIUM
AV:N/AC:M/Au:N/C:P/I:P/A:N
RedHat/V2
RedHat/V3
Ubuntu

In TensorFlow Lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, saved models in the flatbuffer format use a double indexing scheme: a model has a set of subgraphs, each subgraph has a set of operators and each operator has a set of input/output tensors. The flatbuffer format uses indices for the tensors, indexing into an array of tensors that is owned by the subgraph. This results in a pattern of double array indexing when trying to get the data of each tensor. However, some operators can have some tensors be optional. To handle this scenario, the flatbuffer model uses a negative -1 value as index for these tensors. This results in special casing during validation at model loading time. Unfortunately, this means that the -1 index is a valid tensor index for any operator, including those that dont expect optional inputs and including for output tensors. Thus, this allows writing and reading from outside the bounds of heap allocated arrays, although only at a specific offset from the start of these arrays. This results in both read and write gadgets, albeit very limited in scope. The issue is patched in several commits (46d5b0852, 00302787b7, e11f5558, cd31fd0ce, 1970c21, and fff2c83), and is released in TensorFlow versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1. A potential workaround would be to add a custom Verifier to the model loading code to ensure that only operators which accept optional inputs use the -1 special value and only for the tensors that they expect to be optional. Since this allow-list type approach is erro-prone, we advise upgrading to the patched code.

Weakness

The product reads data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Tensorflow Google * 1.15.4 (excluding)
Tensorflow Google 2.0.0 (including) 2.0.3 (excluding)
Tensorflow Google 2.1.0 (including) 2.1.2 (excluding)
Tensorflow Google 2.2.0 (including) 2.2.1 (excluding)
Tensorflow Google 2.3.0 (including) 2.3.1 (excluding)

Potential Mitigations

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”
  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
  • To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.

References