CVE Vulnerabilities

CVE-2020-15999

Out-of-bounds Write

Published: Nov 03, 2020 | Modified: Jul 25, 2024
CVSS 3.x
6.5
MEDIUM
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H
CVSS 2.x
4.3 MEDIUM
AV:N/AC:M/Au:N/C:N/I:N/A:P
RedHat/V2
RedHat/V3
8.6 IMPORTANT
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:H
Ubuntu
HIGH

Heap buffer overflow in Freetype in Google Chrome prior to 86.0.4240.111 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.

Weakness

The product writes data past the end, or before the beginning, of the intended buffer.

Affected Software

Name Vendor Start Version End Version
Chrome Google * 86.0.4240.111 (excluding)
Red Hat Enterprise Linux 6 Supplementary RedHat chromium-browser-0:86.0.4240.111-1.el6_10 *
Red Hat Enterprise Linux 7 RedHat freetype-0:2.8-14.el7_9.1 *
Red Hat Enterprise Linux 8 RedHat freetype-0:2.9.1-4.el8_3.1 *
Red Hat Enterprise Linux 8.0 Update Services for SAP Solutions RedHat freetype-0:2.9.1-4.el8_0.1 *
Red Hat Enterprise Linux 8.1 Extended Update Support RedHat freetype-0:2.9.1-4.el8_1.1 *
Red Hat Enterprise Linux 8.2 Extended Update Support RedHat freetype-0:2.9.1-4.el8_2.1 *
Android Ubuntu trusty *
Android Ubuntu xenial *
Chromium-browser Ubuntu bionic *
Chromium-browser Ubuntu trusty *
Chromium-browser Ubuntu upstream *
Chromium-browser Ubuntu xenial *
Firefox Ubuntu trusty *
Freetype Ubuntu bionic *
Freetype Ubuntu devel *
Freetype Ubuntu focal *
Freetype Ubuntu groovy *
Freetype Ubuntu hirsute *
Freetype Ubuntu impish *
Freetype Ubuntu jammy *
Freetype Ubuntu kinetic *
Freetype Ubuntu lunar *
Freetype Ubuntu mantic *
Freetype Ubuntu noble *
Freetype Ubuntu oracular *
Freetype Ubuntu trusty *
Freetype Ubuntu trusty/esm *
Freetype Ubuntu upstream *
Freetype Ubuntu xenial *
Godot Ubuntu trusty *
Graphicsmagick Ubuntu trusty *
Musescore Ubuntu trusty *
Openjdk-12 Ubuntu trusty *
Openjdk-13 Ubuntu trusty *
Openjdk-15 Ubuntu trusty *
Openjdk-lts Ubuntu trusty *
Oxide-qt Ubuntu trusty *
Paraview Ubuntu trusty *
Qtbase-opensource-src Ubuntu trusty *
Qtbase-opensource-src-gles Ubuntu trusty *
Texlive-bin Ubuntu trusty *
Texmaker Ubuntu trusty *
Thunderbird Ubuntu trusty *
Thunderbird Ubuntu upstream *

Potential Mitigations

  • Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.

  • Be wary that a language’s interface to native code may still be subject to overflows, even if the language itself is theoretically safe.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

  • Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.

  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.

  • Consider adhering to the following rules when allocating and managing an application’s memory:

  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.

  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.

  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

  • Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.

  • For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].

References